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tangent space index of the tetrad in general relativity being identified
with the tetrad’s internal (gauge group) index in gauge theory.
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1. INTRODUCTION

It is currently thought that there exist four fundamental force fields in
nature: gravitational, electromagnetic, weak and strong. The develop-
ment of a theory of all known force fields is one which goes back to the
mid-nineteenth century, when attempts were made to unify the grav-
itational and electromagnetic fields. The contemporary theory of all
four fields is known as “grand unified field theory” (GUFT). Recently a
generally covariant, classical field/matter equation [1] and wave equa-
tion of quantum field/matter theory [2] was developed and applied to
GUFT. In this theory the tangent bundle of generally relativity [3] is
also the fiber bundle of gauge theory [4]. Both the tangent and fiber
bundles are described [2] by the tetrad (or vielbein) qa

µ [3] whose or-
thonormal tangent space index a becomes the index both of the tangent
space in general relativity and of the fiber bundle space in gauge theory.
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The index µ of the tetrad is that of the non-Euclidean base manifold.
In general relativity, the base manifold is non-Euclidean space-time in
four dimensions. GUFT is thereby developed [1,2] as a theory of gen-
eral relativity [3], in which all the equations of physics are generally
covariant. In quantum GUFT [2] the tetrad is the eigenfunction of
the generally covariant wave equation [2] from which is obtained the
equations of the quantized force and matter fields in nature. Exam-
ples of such equations in classical field/matter theory are the Einstein
field equation and the equations of generally covariant electrodynamics
[5-10], namely the O(3) electrodynamic field/matter equations. These
were obtained from the classical equation introduced in Ref. [1]. Equa-
tions of quantum field/matter theory such as the single particle wave
equation, the Schrödinger equation, the Klein-Gordon and Dirac equa-
tions, were obtained from the quantized equation in Ref. [2]. The latter
is a generally covariant, second-order wave equation which also gives
wave and quantum field equations in higher symmetry electrodynam-
ics [5-10], the O(3) d’Alembert and Proca equations. Electrodynamics
is thereby developed into a generally covariant theory, as required by
the principle of general relativity [11]. The generally covariant wave
equation [2] was used as a theory of the weak and strong fields by rec-
ognizing that the internal index of the tetrad is both the fiber bundle
index of gauge field theory [3] and the tangent space index of general
relativity. The internal gauge group index of the parity-violating weak
field [4] therefore becomes a manifestation of geometry and is closely re-
lated to the internal O(3) symmetry gauge group index a = (1), (2), (3)
of O(3) electrodynamics, where ((1),(2),(3)) denotes the orthonormal,
O(3) symmetry, complex circular basis of three-dimensional Euclidean
space [5-10]. By developing the basis ((1),(2),(3)) with an SU(3) repre-
sentation it becomes possible to apply the generally covariant classical
[1] and quantum [2] equations into equations in the strong field [4].

In this theory, physics is reduced to geometry. The tetrad is used
[2,3] to introduce differential geometry into general relativity, and in
this Letter the classical and quantum equations developed in Refs. [1]
and [2] are combined with the Maurer-Cartan structure relations to
give a GUFT theory based entirely on differential geometry [3]. In so
doing, it is seen that all four fields are manifestations of differential ge-
ometry and can be inter-related with the structure relations combined
with the Evans equations [1,2] expressed as equations in differential
forms [3,4]. If the index a represents the tangent space of the base
manifold representing gravitation then the Evans equations [1,2] are
those of gravitation. If the index a has an O(3) symmetry with the ba-
sis ((1),(2),(3)), the Evans equations are those of generally covariant,
or higher symmetry, electromagnetism [1,2,5-10]. If the index a has an
SU(2) symmetry, the Evans equations are those of the parity-violating
weak field; and if the index a has SU(3) symmetry, the Evans equa-
tions are those of the strong field. In order to build the theory from
first geometrical principles Sec. 2 gives a description of the tetrad at
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work in O(3) electrodynamics, and Sec. 3 gives the Evans equations
as equations between differential forms and combines them with the
Maurer-Cartan structure relations.

2. THE TETRAD IN GENERALLY COVARIANT (O(3))
ELECTRODYNAMICS

Define the base manifold in general as the non-Euclidean spacetime
indexed by µ = (0, 1, 2, 3). In this manifold define the infinitesimal
displacement vector in the space basis (u1, u2, u3):

dr =
∂r

∂u1

du1 +
∂r

∂u2

du2 +
∂r

∂u3

du3 (1)

and the three metric vectors [2,9,11]:

q1 =
∂r

∂u1

, q2 =
∂r

∂u2

, q3 =
∂r

∂u3

. (2)

Define the orthonormal tangent spacetime by the index a of the O(3)
symmetry complex circular basis:

e(1) × e(2) = ie(3)∗ et cyclicum, (3)

whose unit vectors are related to the orthonormal Cartesian unit vec-
tors i, j,k of the tangent space by

e(1) =
1√
2
(i− ij), e(2) =

1√
2
(i + ij), e(3) = k. (4)

In the tangent space, the displacement vector is

dr =
∂r

∂e(1)
de(1) +

∂r

∂e(2)
de(2) +

∂r

∂e(3)
de(3), (5)

and the three orthonormal metric vectors in the tangent space are

q(1) = ∂r/∂e(1) = e(1),

q(2) = ∂r/∂e(2) = e(2),

q(3) = ∂r/∂e(3) = e(3).

(6)

Let the orthonormal tangent space rotate and translate with respect
to the space i = 1, 2, 3 by introducing the phase φ = ωt − κZ of the
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wave equation [5-10]. Here ω is an angular frequency at instant t and κ
is a wave-vector at point Z. The orthonormal tangent space is thereby
defined by the metric vectors

q(1) = e(1)eiφ, q(2) = e(2)e−iφ, q(3) = e(3) (7)

whose magnitudes are

q(1) =
1√
2
(1− i)eiφ, q(2) =

1√
2
(1 + i)e−iφ, q(3) = 1. (8)

The components of the tangent space and base manifold are inter-
related by the tetrad (or vielbein) matrix, whose space-like components
form a 3× 3 invertible matrix

q(1)

q(2)

q(3)

 =


q
(1)
1 q

(1)
2 q

(1)
3

q
(2)
1 q

(2)
2 q

(2)
3

q
(3)
1 q

(3)
2 q

(3)
3



q1

q2

q3

 . (9)

This expression means that the coordinate system defined by the metric
vectors q(1),q(2),q(3) is rotating and translating with respect to the
coordinate system defined by the metric vectors q1,q2,q3.

Let the components of the tetrad matrix be

qa
µ := q

(1)
1 , q

(1)
2 . . . , (10)

then these define the O(3) electromagnetic field [1,2,5-10] or potential:

Aa
µ := A

(1)
1 , A

(1)
2 , . . . (11)

through the Evans wave equation [2], which is an eigenequation with
the tetrad

Aa
µ = A(0)qa

µ (12)

as the eigenfunction.
The inverse of the tetrad matrix is defined by [12]

Aµ
a :=

(
Aa

µ

)−1
= adj Aa

µ/|Aa
µ|, (13)

where adj Aa
µ is the adjoint and |Aa

µ| the determinant of the tetrad
matrix. (The Evans equations are obtained from the determinant |Aa

µ|

4



using the appropriate Lagrangian and variational methods [3,13]). The
adjoint matrix is the matrix of cofactors:

adjAa
µ

A(0)
=


(
q
(2)
2 q

(3)
3 − q

(2)
3 q

(3)
3

) (
q
(2)
1 q

(3)
3 − q

(2)
3 q

(3)
1

) (
q
(2)
1 q

(3)
2 − q

(2)
2 q

(3)
1

)
(
q
(1)
2 q

(3)
3 − q

(1)
3 q

(3)
2

) (
q
(1)
1 q

(3)
3 − q

(1)
3 q

(3)
1

) (
q
(1)
1 q

(3)
2 − q

(1)
2 q

(3)
1

)
(
q
(1)
2 q

(2)
3 − q

(1)
3 q

(2)
2

) (
q
(1)
2 q

(2)
3 − q

(1)
3 q

(2)
1

) (
q
(1)
1 q

(2)
2 − q

(1)
2 q

(2)
1

)
 .

(14)
The cofactors can be expressed in terms of the elements of the ma-
trix qa

µ by using the O(3) cyclic relation that defines the orthonormal,
Euclidean, tangent space a:

e
(2)
2 e

(3)
3 − e

(2)
3 e

(3)
2 = −ie(1)∗1 = −ie(2)

1 , etc. (15)

Thus,

q
(2)
2 q

(3)
3 − q

(2)
3 q

(3)
2 = −iq(2)

1 , etc, (16)

and the adjoint matrix becomes

adj Aa
µ = −iA(0)


q
(2)
1 q

(1)
1 q

(3)
1

q
(2)
2 q

(1)
2 q

(3)
2

q
(2)
3 q

(1)
3 q

(3)
3

 . (17)

The determinant |Aa
µ| is defined by

A adjA = |A|IA(0), |Aa
µ| = −iA(0). (18)

The inverse matrix is therefore

Aµ
a = A(0)


q
(2)
1 q

(1)
1 q

(3)
1

q
(2)
2 q

(1)
2 q

(3)
2

q
(2)
3 q

(1)
3 q

(3)
3

 , (19)

and we arrive at the equations

A(0)

q(1)

q(2)

q(3)

 = Aa
µ

q1

q2

q3

 , A(0)

q1

q2

q3

 = Aµ
a

q(1)

q(2)

q(3)

 . (20)
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In the notation of differential geometry [3], these two equations are
written as

A(0)qa = Aa
µq

µ, A(0)qµ = Aµ
aq

a (21)

and define the tetrad Aa
µ and the inverse tetrad Aµ

a . The tetrad and its
inverse define the FIELDS in grand unified field theory. In other words,
all four fields currently thought to exist are defined by the way in which
the tangent space is related to the base manifold. The interrelation of
fields is also defined by the tetrad. In the presence of gravitation, for
example, the base manifold becomes curved, and the tetrad defining
the electromagnetic field in Eq. (12) changes, so the electromagnetic
field changes due to the presence of gravitation.

These considerations can be extended to the four dimensions of
spacetime by interrelating the two basis four-vectors

qa :=
(
q(0), q(1), q(2), q(3)

)
,

qµ :=
(
q0, q1, q2, q3

)
,

(22)

in which the tetrad is defined by the four by four invertible matrix

A(0)


q(0)

q(1)

q(2)

q(3)

 = Aa
µ


q0

q1

q2

q3

 , A(0)


q0

q1

q2

q3

 = Aµ
a


q(0)

q(1)

q(2)

q(3)

 (23)

whose adjoint (matrix of cofactors) reads

adj Aa
µ = −i


q
(0)
0 q

(2)
0 q

(1)
0 q

(3)
0

q
(0)
1 q

(2)
1 q

(1)
1 q

(3)
1

q
(0)
2 q

(2)
2 q

(1)
2 q

(3)
2

q
(0)
3 q

(2)
3 q

(1)
3 q

(3)
3

 (24)

and whose determinant is

|Aa
µ| = −i. (25)

The inverse matrix (or inverse tetrad) is therefore defined by

Aa
µA

ν
a = δν

µ. (26)

We have gone through this exercise in detail to illustrate the meaning
of the tetrad in O(3) electrodynamics. It is essentially the matrix that
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inter-relates two frames of reference: that of the base manifold and
the orthonormal tangent space. The tetrad is the eigenfunction of the
Evans wave equation [2], which for O(3) electrodynamics becomes the
eigenequation

(� + kT )Aa
µ = 0, (27)

where k is the gravitational constant and T the contracted energy-
momentum tensor [2]. The wave equation (27) is a direct consequence
of the tetrad postulate [2,3], which for O(3) electrodynamics is

DνA
a
µ = 0, (28)

representing a cyclic relation [2] between tetrad components (compo-
nents of the O(3) electromagnetic field). The tetrad is centrally im-
portant to the theory of general relativity expressed as a theory of
differential geometry [3,13] and is used to derive the Maurer-Cartan
structure relations [3] between differential forms: the Riemann and
torsion forms, valid for all types of connection. By recognizing that
the tetrad is the fundamental eigenfunction in the Evans wave equa-
tion [2], it follows (Sec. 3) that the Maurer-Cartan structure relations
become field/matter relations of grand unified field theory, i.e., of all
the known force fields and matter waves in nature. The wave equa-
tion [2] is the quantized version of the classical field/matter equation
introduced in Ref. [1]:

Rµ −
1

2
Rqµ = kTµ. (29)

Equation (29) is written in terms of four-vectors in a base manifold that
is in general a non-Euclidean spacetime. The field tensor in Eq. (29)
is the four-vector

Gµ = Rµ −
1

2
Rqµ, (30)

where Rµ is the Ricci four-vector, R the scalar curvature, qµ the
metric four-vector, k is the Einstein constant, and Tµ the canonical
energy-momentum four-vector. In the language of differential geom-
etry [2,3,13], Eq. (29) becomes a relation between the corresponding
differential one-forms. In tetrad notation, Eq. (29) is

Ga
µ = kT a

µ . (31)

In differential geometry, the equation becomes

Ga = kT a, (32)

where the index µ is implied [3]. The wave equation is differential
geometry is the eigenequation with the one form (tetrad) qa as eigen-
function:

(� + kT )qa = 0. (33)
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The O(3) electromagnetic gauge field is then the two-form [2]

Gc = G(0)qa ∧ qb, (34)

where the wedge produce is a wedge product between one-forms [3]:(
qa ∧ qb

)
µν

:= qa
µq

b
ν − qa

νq
b
µ. (35)

A central result of this theory is that electrodynamics is a gauge
field (Eq. (34)) whose internal index c is the tangent index of the base
manifold in general relativity. The tangent space is an orthonormal
Euclidean space whose unit vectors form an O(3) symmetry cyclic re-
lation:

e(1) × e(2) = ie(3)∗, et cyclicum. (36)

Thus, generally covariant electrodynamics in an O(3) symmetry gauge
field theory [1,2,5-10]. This is a fundamental result of general relativity
and differential geometry.

3. GUFT AS DIFFERENTIAL GEOMETRY: EVANS
EQUATIONS AND THE MAURER-CARTAN
STRUCTURE RELATIONS

Equation (31) is the Evans field equation (29) for each index a. The
quantities in Eq. (29) are defined by [1-3]

Rµν = Rµqν , qµν = qµqν , Tµν = Tµqν , (37)

where Rµν is the Ricci tensor, qµν the symmetric metric tensor, and Tµν

the symmetric canonical energy-momentum tensor of Einstein’s general
relativity [3]. The symmetric metric tensor is defined as

qµν = qµqν (38)

and [14]
qµνqµν = 4. (39)

Considering the flat spacetime limit:

qµqµ = −2, qµ = (1, 1, 1, 1), qµ = (1,−1,−1,−1). (40)

More generally, Eq. (40) indicates that, in non-Euclidean spacetime,
qµ is the inverse metric if qµ is the metric. The scalar curvature is

R = qµνRµν = qµqνRµqν = −2qµRµ; (41)
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and multiplying Eq. (41) on both sides by qµ gives

Rµ =
1

4
Rqµ. (42)

The Evans field equation (29) can therefore be developed as

Ga
µ = −1

4
Rqa

µ = kT a
µ . (43)

Similarly, the contracted energy-momentum tensor is defined by Ein-
stein [14] as

T = qµνTµν = −2qµTµ. (44)

Multiplication of Eq. (44) on both sides by qµ gives

Tµ =
1

4
Tqµ. (45)

Therefore, the Evans field equation becomes the classical equation

Rqa
µ = −kTqa

µ, (46)

which is the contracted form of Einstein’s field equation

R = −kT (47)

multiplied on both sides by the tetrad qa
µ. The Evans wave equation

[2]
�qa

µ = Rqa
µ = −kTqa

µ (48)

is obtained from the tetrad postulate and is the quantized version of
Eq. (47).

The classical and quantum Evans equations are equations for
the fundamental field in grand unified field theory. In both cases the
field is recognized as the tetrad. The tetrad represents the components
indexed µ of the coordinate basis vectors in terms of the components
indexed a of the orthonormal basis defining the vectors o the tangent
space in general relativity. In differential geometry the tetrads are also
the components of the orthonormal basis one-forms in terms of the
coordinate basis one forms [3].

The classical Eq. (4b) states that

R + kT = 0 (49)

by ansatz, the basic postulate of general relativity. The quantum
Eq. (48) originates in the tetrad postulate [3] of geometry, a postu-
late which is true for any connection, whether torsion free or not, and
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Eq. (48) gives quantum field/matter theory from general relativity.
Gravitation is described by these equations when the field is the tetrad
qa
µ. The other three fields are described when the field is the tetrad mul-

tiplied by an appropriate scaling factor. For example, the fundamental
electromagnetic field is

Aa
µ = A(0)qa

µ, (50)

where A(0) is the magnitude of the electromagnetic four-potential, as
described in Sec. 1.

The gauge invariant fields, or gauge fields, are defined as fol-
lows. The gravitational gauge field is the Riemann form of differential
geometry, the dual of the torsion tensor:

Rab =
R

4
εabcd[q

c, qd]. (51)

The other three fields are defined by the torsion form, the anti-
symmetric sum or commutator of tetrads:

τ c
µν :=

R

4

[
qa
µ, q

b
ν

]
=
R

4

(
qa
µq

b
ν − qa

νq
b
µ

)
. (52)

The tetrad is a vector valued one form [3]. Define its exterior derivative
as the vector valued two-form

(dq)a
µν := ∂µq

a
ν − ∂νq

a
µ (53)

and its covariant exterior derivative as

(Dq)a
µν = (dq + ω ∧ q)a

µν

= ∂µq
a
ν − ∂νq

a
µ + ωa

µbq
b
ν − ωa

νbq
b
µ,

(54)

where ω is the spin connection [3].
The first Maurer-Cartan structure relation [3] is then

τ c = Dqc, (55)

and the second Maurer-Cartan structure relation is

Ra
b = Dωa

b . (56)

We therefore arrive at the following equations which combine the two
Evans equations with the two Maurer-Cartan structure relations to
define the gauge invariant fields in grand unified field theory:

Ra
b = εa

bcT
c, (57)
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where T c is the torsion form,

τ c =
R

4

[
qa, qb

]
= Dqc. (58)

The gravitational field is described by the Riemann form and the other
three fields by the torsion form multiplied by the scale factor G(0):

Gc = G(0)τ c. (59)

In O(3) electrodynamics the scale factor is the primordial magnetic
flux density (in units of tesla, or webers per square meter):

B(0) = (1/4)G(0)R. (60)

Equations (57) and (58) also define the spin connection in terms of the
tetrad for all four fields.

Differential geometry [3] also gives the following identities:

DRa
b := 0, (61)

D∗τ c := 0, (62)

Dτ c = Rc
b ∧ qb, (63)

which can be used to interrelate the four gauge fields. In the following
section, several novel results are given by interrelating the gravitational
and electromagnetic fields. Equation (61) is the Bianchi identity, and
Eq. (62) and (63) are the homogeneous and inhomogeneous gauge field
equations. In O(3) electrodynamics Eq. (63) shows that the current
term is derived from the Riemann form, and therefore from the scalar
curvature R multiplied by the anti-commutator of tetrads.

This fundamental result of differential geometry implies that
electromagnetic energy can be transmitted from a source to a receiver
by scalar curvature R and that electromagnetic energy is available in
non-Euclidean spacetime.

Experimental evidence supporting ths result might be found in
devices such as the patented motionless electromagnetic generator [15]
and Sweet’s device [16]. All fields in nature are fundamentally depen-
dent upon, and originate in, scalar curvature R.

4. INTER-RELATION OF FIELDS: THE POISSON
EQUATION AND OTHER RESULTS

The Evans wave equation [2] is obtained by covariant differentiation of
the tetrad postulate (28) and reads

DρDρq
a
µ = (� + kT )qa

µ = (�−R)qa
µ = 0, (64)
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where � is the d’Alembertian in Euclidean spacetime (the spacetime
of special relativity). The scalar curvature in this equation is [2]

R = −DµΓρ
µρ = −

(
∂µΓρ

µρ + Γµρ
λ Γλ

µρ

)
. (65)

We therefore deduce that

∂µΓρ
µρ + Γµρ

λ Γλ
µρ = kT. (66)

Both Eqs. (64) and (66) give Poisson’s equation in the appropriate ap-
proximation. The equivalence principle states that the laws of physics
in small enough regions of spacetime reduce to the equations of special
relativity [3,4]. In special relativity there exist equations such as

(� + κ2
0)φ = 0, (67)

(� + κ2
0)ψ = 0, (68)

(� + κ2
0)Aµ = 0, (69)

where λ0 is the Compton wavelength of a particle:

λ0 = 1/κ0 = ~/mc. (70)

Here m is the particle mass, ~ is the Dirac constant h/2π, and c the
speed of light in vacuum. Equation (67) is the Klein-Gordon equation,
in which φ is the scalar field; Eq. (68) is the Dirac equation, in which
ψ is the four spinor; and Eq. (69) is the Proca equation, in which Aµ is
the electromagnetic wave function, conventionally a four-vector of the
Maxwell Heaviside theory [4]. (In generally covariant electrodynamics
Aa

µ is a tetrad, as we have already argued.) In order to reduce Eq. (64)
to Eqs. (67), (68), and (69), we define the latter as limiting forms of
the Evans wave equation of general relativity, Eq. (64). The limiting
forms are obtained when the rest curvature R0 is defined by

|R0| = κ2
0 = kT0, (71)

where
T0 = m/V = q0q0T00, q0 := 1. (72)

The rest curvature is therefore the inverse square of the Compton wave-
length for any particle, including the photon:

|R0| = m2c2/~2. (73)

The rest curvature is defined by the rest energy:

E0 = mc2 = ~c
√
|R0|, (74)
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where
κ0 =

√
|R0|. (75)

More generally, the quantum of energy for any particle (not only the
photon) is given by

E = ~c
√
|R|. (76)

where
|R| = DµΓρ

µρ. (77)

Equation (76) is therefore a generalization of the Planck postulate for
the photon in special relativity to all particles in general relativity.

On writing

E = ~ω = ~c
√
|R|, (78)

it becomes clear the the quantum ~ω is electromagnetic energy, e.g.,
is available from scalar curvature R, i.e., from any kind of connection
Γρ

µρ, and for any sources of R. Equation (63) is a statement of this
result in classical electrodynamics.

It is now demonstrated that the well-known Poisson equation for
both Newtonian dynamics and for electro-statics can be obtained self
consistently both from Eq. (64) and Eq. (66). Starting from Eq. (64),
the Poisson equation is obtained from the component q0

0:(
� +

km

V

)
q0
0 = 0, (79)

in which T = m/V is the mass density and V is a volume. The rest
mass density m/V0, where V0 is the rest volume, can be regarded as
the zero-point energy of the Evans wave equation of generally covari-
ant quantum field theory. In the weak field or Newtonian limit [1-3],
Eq. (79) becomes

�q0
0 = −km

V
q0
0 ∼ −

km

V
, (80)

because in this limit
q0
0 = 1 + η0

0, (81)

where η0
0 is a small perturbation of the tetrad. In the Newtonian limit,

q0
0 is a quasi-static, so Eq. (80) reduces to

∇2Φ = 4πGρ, (82)

which is the Poisson equation of Newtonian dynamics [3,17] provided
that

Φ :=
1

2
c2q0

0, (83)
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where G is Newton’s gravitational constant and ρ the mass density
m/V .

In order to derive Eq. (82) from Eq. (66), it is assumed that
in the weak-field limit the term quadratic in the connection can be
neglected and the Eq. (72) applies, so that the relevant component of
the metric vector qµ in the non-Euclidean base manifold is q0. In the
Newtonian limit

q0 = 1 + η0, (84)

where η0 � q0. The metric vector is assumed to be metric compatible
[2,3], and the equation of metric compatibility for qµ is

Dνq
µ = ∂νq

µ + Γµ
νλq

λ = 0. (85)

The relevant index to consider is λ = 0, and thus

∂νq
µ + Γµ

ν0q
0 = 0. (86)

Multiplying by q0 and using q0q
0 = 1, one gets

Γµ
ν0 = −q0∂νq

µ ∼ −∂νq
µ, (87)

where Eq. (84) has been used. The relevant index in Eq. (87) is µ = 0,
giving

Γ0
ν0 = −∂νq

0, (88)

so that Eq. (66) becomes

∂µΓ0
µ0 = −�q0 = (8π/c2)Gρ. (89)

In the Newtonian limit the field is quasi-static, so Eq. (89) reduces to
the Poisson Eq. (82), provided that

Φ :=
1

2
c2q0. (90)

These two derivations of the Poisson equation in the Newtonian limit
show that Eq. (64) is consistent Eq. (66) and that there exists a rest
curvature corresponding to rest energy in special relativity. The rest
curvature produces energy which is convertible into any other form of
energy, including electromagnetic energy; and, in grand unified field
theory, electromagnetic energy originates in general from curvature R.
Equations (67) and (69) are limiting forms of Eq. (64) when the cur-
vature is the rest curvature. Therefore the scalar field, the spinor field,
and the conventional electromagnetic field of Maxwell Heaviside field
theory are all limiting forms of the tetrad.

The Poisson equation in electrostatics is obtained, using the
same approximations, from the Evans wave equation (64) when its
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eigenfunction is the electromagnetic tetrad field defined by Eq. (50).
The Poisson equation for electrostatics is therefore a limiting form of
the equation

(� + kT )Aa
µ = (�−R)Aa

µ = 0 (91)

in general relativity and grand unified field theory; it is

∇2(A(0)Φ) = 4πG(A(0)ρ). (92)

The scalar potential in electrostatics is therefore

φ = (1/c)A(0)Φ (93)

and the Poisson equation in electrostatics is the Schrödinger-type
eigenequation

∇2φ = (4πGρ/c2)φ. (94)

The units of φ are JC−1 and the units of A(0) are JsC−1m−1, and so

φ = cA(0). (95)

The Poisson equation is therefore an eigenequation in the electrostatic
potential φ, and this result can be thought of as the quantization of
charge because the quantity ε0φ where ε0 is the vacuum permittivity
(S.I. Units) has the units of C m−1. Therefore if electrostatics is consid-
ered to be an approximation of generally covariant grand unified field
theory, we obtain the equation of quantization of charge:

∇2ψe = (4πGρ/c2)ψe (96)

where ψe = ε0φ and

ε0 = 8.854188×10−12J−1C2m−1, G = 6.6726×10−11Nm2kg−2. (96b)

The Poisson equation in S.I. units in electrostatics is usually written
as

∇2φ = −ρe/ε0, (97)

where ρe is the charge density in C m−3. The minus sign in Eq. (97) is a
matter of convention [18]; it is chosen so that the electric field strength
is defined by

E := −∇φ, (98)

i.e., points towards a decrease in potential. The factor 4π is conven-
tionally divided out of the Poisson equation for electrostatics [18] as a
matter of convenience in the S.I. system of units. Therefore the Poisson
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equation for electrostatics can always be written in the same form as
that for Newtonian dynamics:

∇2φ = (4π/ε0)ρe, (99)

where the charge density ρe and mass density ρ are, respectively,

ρe =

∫
edV = (ε0G/c

2)φ(0)ρ, ρ =

∫
mdV. (100)

Here e is the fundamental charge (defined as the charge on the proton,
or the modulus of the charge on the electron) and m the mass of the
electron:

e = 1.60219× 10−19 C, m = 9.10953× 10−31 kg. (101)

Comparison of Eqs. (94) and (99) yields

ρe = (ε0G/c
2)φ(0)ρ, (102)

giving the fundamental ratio of charge e to mass m in terms of the
fundamental electrostatic potential φ(0):

e = (ε0G/c
2)φ(0)m. (103)

Application of (103) to the electron gives

φ(0)(one electron) =
c2e

ε0Gm
JC−1, (104)

which is a fundamental constant furnishing the number of joules avail-
able from the ratio e/m for one electron in Eq. (104),

c = 2.997925× 108m s−1,

e = 1.60219× 10−19C,

ε0 = 8.854188× 10−12J−1C2m−1,

G = 6.6726× 10−11Nm2kg−2,

m = 9.10953× 10−31kg,

(105)

and so

φ(0)(one electron) = 2.6726× 1049 J C−1,

A(0)(one electron) = 8.92473× 1040 J C−1,s m−1.
(106)
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It now becomes possible to interrelate the fundamental equations of
Newtonian dynamics and electrostatics by using Eqs. (102) and (103)
to interrelate terms in the following well-known equations:

g = −∇Φ, E = −∇φ; (107)

F = −(Gm1m2/r
2)k = m1g, F = −(e1e2/ε0r

2)k = e1E, (108)

∇Φ = (Gm2/r
2)k, ∇φ = (e2/ε0r

2)k, (109)

in which g is the gravitational acceleration, r the distance between two
masses m1 and m2 or two charges e1 and e2, and F is the force between
the two masses of the two charges.

All these well-known equations originate in the wave equation
(64) of generally covariant grand unified field theory. Both the gravita-
tional and the electrostatic fields originate in the tetrad when approx-
imated in the weak-field limit in which the tetrad is a perturbation of
Euclidean spacetime and in which the field is quasistatic.

All forms of energy are inter-convertible, and it follows from the
equation

R = −kT (110)

that all forms of curvature R are interconvertible. Newtonian dynamics
is the weak-field limit of the wave equation (64), and electrostatics is
the weak-field limit of the same equation multiplied by A(0). It follows
that, given a charge e, there is an equivalent amount of mass m. If the
force in Newton’s between two masses a distance r apart is numerically
the same as that between two charges the same distance r apart, then

e2 = ε0Gm
2. (111)

From this equation,

e = ±2.430647× 10−11m, m = ±4.11413× 1010|e|, (112)

which shows that if there is only one sign of mass (as observed experi-
mentally). Charge can be thought to originate in “symmetry breaking”
of mass into two different signs, and mass originates in curvature of
non-Euclidean spacetime, something which can be loosely described as
a “symmetry breaking of the vacuum.” Therefore there can be neither
charge nor mass in Euclidean spacetime.

The force between two charges of one coulomb each, one meter
apart, is

1/ε0 = 1.12941× 1011 N, (113)

and the force between two masses of one kilogram each, one meter
apart, is

G = 6.6726× 10−11 N. (114)
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The electrostatic force is therefore

1/ε0G = 1.69261× 1021 (115)

times greater than the gravitational force, which is why the gravita-
tional force is conventionally referred to as “weak” in comparison with
the electrostatic force in the laboratory. However, both forces originate
in rest curvature R0. From Eq. (102), the charge density is given by

ρe = −(ε0φ
(0)/8π)R0, (116)

and the mass density is
ρ = −R/k. (117)

The Einstein constant is

k = 8πG/c2 = 1.86595× 10−26 N s2kg−2, (118)

and thus

ρe = −3.5229× 10−13φ(0)R0, ρ = −5.35920× 1025R0. (119)

If the fundamental potential (106) is used in Eq. (119), the following
results are obtained:

ρe = −9.41530× 1036R0, ρ = −5.35920× 1025R0. (120)

The charge obtainable from a given curvature R in a given volume is
about twelve orders of magnitude greater than the mass obtainable from
the same curvature R for the same volume.

From Eq. (79) it is possible to define the rest volume of a particle:

V0 =
8πG~2

mc4
=

8πλ2
p√

|R0|
, (121)

where
λc = 1/

√
|R0| = ~/mc (122)

is the Compton wavelength, and where λp denotes the Planck length

λp =
√
G~/c3. (123)

For the electron,

λc = 2.42631× 10−12m, λp = 4.05087× 10−35m, (124)

and the rest volume is therefore

V0 = 8πλcλ
2
p = 1.00065× 10−79m3. (125)
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Equation (122) interrelates wave-particle dualism and general relativ-
ity.

The Planck and Compton wavelengths can be expressed in terms
of the rest curvature R0 as follows:

λc = (c2/Gm)λ2
p = 1/

√
|R0|. (126)

The classical radius of the electron (λe) can also be expressed in terms
of rest curvature R0:

λe = αλ0, λ0 = 1/
√
|R0|, (127)

where
α = e2/4πε0~c (128)

is the fine structure constant of electrodynamics:

α = 7.297351× 10−3. (129)

Equation (127) derives quantum electrodynamics from generally co-
variant grand unified field theory.

The rest wave-number

κ0 = 1/λ0 =
√
|R0| (130)

is fundamental to the interrelation of general relativity with quantum
mechanics and classical and quantum electrodynamics. The Klein-
Gordon, Dirac, and Proca equations can each be written in terms of
the rest wavenumber, which is the inverse of the Compton wavelength:

(�−R0)φ = 0, (131)

(�−R0)ψ = 0, (132)

(�−R0)Aµ = 0. (133)

The Evans wave equation shows that

DµΓρ
µρ → −R0 (134)

in the limit of special relativity.
The equation of quantization of mass is

m = ~κ0/c := ~ω0/c
2. (135)

The ratio of charge to mass can always be expressed as

e2/m2 = ζε0G, (136)
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where ζ is a dimensionless coefficient. Equation (136) is the result of
the Newton and Coulomb inverse square laws, which we have derived
from the Evans equation in the weak-field limit. Therefore the Newton
and Coulomb inverse square laws become the same. Using Eq. (135)
in Eq. (136),

e = ±~κ0

√
ζε0G/c2. (137)

Comparing Eqs. (136) and (102), one gets

ζ = (e/mc2)φ, (138)

and thus Eq. (137) is the charge quantization equation.
All these results emerge from the Evans wave equation in the

weak-field approximation.
Equation (135) can be generalized to

m = ~κ0/c = ~
√
|R|/c, (139)

i.e., to

E = ~c
√
|R| = ~cκ = ~ω, (140)

which is Eq. (76) for the quantization of energy in terms of the

wavenumber
√
|R|. Similarly, Eq. (139) can be generalized to

e = ±(~/c)
√
ζε0G|R|. (141)

Equations (140) and (141) are generally covariant equations for the

quantization of charge and mass in terms of the wave number
√
|R|,

where R + kT = 0. They show that mass and charge are quantized in
terms of the fundamental wavenumbers:

κ =
√
|R|. (142)

5. DISCUSSION

It has been shown that all force and matter fields in nature are de-
termined and interrelated by the two Evans equations [1,2] combined
with the Maurer-Cartan structure relations of differential geometry [3].
The homogeneous and inhomogeneous gauge field equations then fol-
low from geometrical considerations, and interrelate the torsion and
Riemann forms. The gauge field equations show how the force and
matter fields are interrelated. Some consequences of this deduction are
worked out in Sec. 4, and there are many other consequences yet to
be inferred and tested experimentally. One of the major predictions of
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the Evans equations, the existence of higher symmetry electrodynam-
ics, has been extensively developed and tested experimentally [5-10]; for
example, the fundamental B(3) field of generally covariant electrody-
namics has been observed experimentally in the inverse Faraday effect,
in the phase factor of physical optics and interferometry, and in several
other ways. Another major prediction of the Evans equations is the
availability of electromagnetic energy from non-Euclidean spacetime.
This prediction appears to be verified experimentally in devices such
as the patented electromagnetic generator [15] and in Sweet’s device
[16]. Development of such devices could lead to the general availability
of electromagnetic energy, energy which originates in the wavenumber√
|R|. The Evans equations show that the acquisition of such energy

does not violate Noether’s Theorem. Energy is obtained from kT in
a source situated anywhere in the universe and is transmitted to the
receiver by the scalar curvature R = −kT of non-Euclidean spacetime,
sometimes referred to loosely as “the vacuum.” The popular phrase
“energy from the vacuum” [15] does not imply “energy from nothing
at all.”

The most important aspect of a grand unified field theory is
its ability to interrelate fields, and in Sec. 4 we have illustrated this
by interrelating, and thus identifying, charge and mass through the
fundamental potential. Since all forms of scalar curvature are inter-
convertible, electromagnetic energy is obtainable from any type of
scalar curvature anywhere in the universe, given the existence of the
primordial fluxon ~/e anywhere in the universe. Therefore electromag-
netic energy from non-Euclidean spacetime is available to the Earth-
bound engineer in usable form and originates in the curvatures inherent
in the rest of the universe. The Evans field and wave equations describe
how the energy propagates from source to Earth-bound engineer in us-
able form, and originates in the curvatures inherent in the rest of the
universe. The Evans field and wave equations describe how the energy
propagates from source to Earth-bound observer. It has been shown
in Sec. 4 that the charge generated by a given curvature R is about
twelve orders of magnitude greater than the mass generated by the
same curvature R in a given volume. This means that the charge and
concomitant electromagnetic energy available from curvature induced by
mass is amplified by about twelve orders of magnitude. Loosely writing,
a small amount of mass results in a very large amount of charge, and
this augurs well for the design of devices which can trap and use this
electromagnetic energy.

In general the Evans field and wave equations are nonlinear in
the connection and require numerical methods for solution, but in Sec. 4
it has been shown that approximate analytical methods of solution can
lead to powerful results on the interrelation of fields. The field is the
tetrad, and the influence of one type of field (e.g., gravitational), on
another (e.g., electromagnetic) is measured through changes in tetrad
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components as discussed in Sec. 2. It is important to develop the inter-
relation of the O(3) electromagnetic field with the weak field and the
gravitational field with the strong field by developing and interrelating
the bases used for the tangent space and fiber bundle space. This will
be the subject of further work. It is already clear however that the
four fields thought to exist in nature have a common origin, the scalar
curvature R.
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