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A generally covariant wave equation is derived geometrically for grand
unified field theory. The equation states most generally that the co-
variant d’Alembertian acting on the vielbein vanishes for the four fields
which are thought to exist in nature: gravitation, electromagnetism,
weak field and strong field. The various known field equations are
derived from the wave equation when the vielbein is the eigenfunc-
tion. When the wave equation is applied to gravitation the wave equa-
tion is the eigenequation of wave mechanics corresponding to Einstein’s
field equation in classical mechanics, the vielbein eigenfunction play-
ing the role of the quantized gravitational field. The three Newton
laws, Newton’s law of universal gravitation, and the Poisson equation
are recovered in the classical and nonrelativistic, weak-field limits of
the quantized gravitational field. The single particle wave-equation
and Klein-Gordon equations are recovered in the relativistic, weak-
field limit of the wave equation when scalar components are consid-
ered of the vielbein eigenfunction of the quantized gravitational field.
The Schrödinger equation is recovered in the non-relativistic, weak-field
limit of the Klein-Gordon equation). The Dirac equation is recovered
in this weak-field limit of the quantized gravitational field (the non-
relativistic limit of the relativistic, quantized gravitational field when
the vielbein plays the role of the spinor. The wave and field equa-
tions of O(3) electrodynamics are recovered when the vielbein becomes
the relativistic dreibein (triad) eigenfunction whose three orthonormal
space indices become identified with the three complex circular indices
(1), (2), (3), and whose four spacetime indices are the indices of non-
Euclidean spacetime (the base manifold). This dreibein is the potential
dreibein of the O(3) electromagnetic field (an electromagnetic poten-
tial four-vector for each index (1), (2), and (3)). The wave equation of
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the parity violating weak field is recovered when the orthonormal space
indices of the relativistic dreibein eigenfunction are identified with the
indices of the three massive weak field bosons. The wave equation of
the strong field is recovered when the orthonormal space indices of the
relativistic vielbein eigenfunction become the eight indices defined by
the group generators of the SU(3) group.

Key words: generally covariant equation, grand unified field theory,
gravitation, higher symmetry electromagnetism, O(3) electrodynamics,
weak field, strong field.

1. INTRODUCTION

Recently [1] a generally covariant classical field equation has been pro-
posed for the unification of the classical gravitational and electromag-
netic fields by considering the metric four-vector qµ in non-Euclidean
spacetime. In this Letter the corresponding equation in wave (or quan-
tum) mechanics is derived by considering the action of the covariant
d’Alembertian operator on the metric four-vector considered as the
eigenfunction. By deriving a metric compatibility equation for the
metric four-vector a wave equation is obtained from a fundamental ge-
ometrical property: the covariant d’Alembertian acting on the metric
vector vanishes in non-Euclidean spacetime. This geometrical result
is also true when the eigenfunction is a symmetric or anti-symmetric
metric tensor [1], and, most generally, when the eigenfunction is a
vielbein [2]. The wave equation with symmetric metric tensor as eigen-
function is the direct result of the latter’s metric compatibility equa-
tion, and the wave equation with vielbein as eigenfunction is the re-
sult of the tetrad postulate [2]. The latter is a fundamental result
of geometry irrespective of metric compatibility and whether or not
the metric tensor is torsion free. The wave equation can therefore be
constructed as an eigenequation from geometry with different types of
eigenfunction. This is achieved in this Letter by expressing the covari-
ant d’Alembertian operator as a sum of the flat space d’Alembertian
operator � plus a term dependent on the non-Euclidean nature of
spacetime. The latter term is shown to be a scalar curvature R which
is identified as the eigenvalue. The eigenoperator is therefore the oper-
ator �, and the wave equation is a fundamental geometrical property
of non-Euclidean spacetime [1,2]. Most generally the eigenfunction is
the vielbein [2] ea

µ, which relates an orthonormal basis (Latin index)
to a coordinate basis (Greek index), and the generally covariant wave
equation is the eigenequation

(� + kT )ea
µ = 0. (1)
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The Einstein field equation [1-3] of gravitational general relativity can
be written in the contracted form [1-4]

R = −kT, (2)

where R and T are obtained [4] from the curvature tensor and the

canonical energy momentum tensor by index contraction. If q
(S)
µν de-

notes the symmetric metric tensor defined [1] by

q(S)
µν = qµqν (3)

then
R = qµν(S)Rµν , T = qµν(S)Tµν , (4)

where Rµν and Tµν are also symmetric tensors. Therefore the generally
covariant wave equation is

(� + kT )ea
µ = 0, kT = −R. (5)

It can be seen that Eq. (5) has the form of the well known
second-order wave equations of dynamics and electrodynamics, such
as the single particle wave equation, the Klein-Gordon, Dirac, Proca,
and d’Alembert [5] and non-relativistic limiting forms, such as the
Schrödinger equation, and, in the classical limit, the Poisson and New-
ton equations. The use of the vielbein as eigenfunction has several well
known advantages [2]:

(1) The tetrad postulate:
Dνe

a
µ = 0, (6)

where Dν denotes the covariant derivative [2], is true for any connec-
tion, whether or not it is metric compatible or torsion free.
(2) The use of the vielbein as eigenfunction allows spinors to be an-
alyzed in non-Euclidean spacetime, and this is essential to derive the
Dirac equation from Eq. (5).
(3) The index a of the vielbein can be identified with the internal index
of gauge theory [2,5], and this property is essential if Eq. (5) is to be
an equation of grand unified field theory.
(4) Vielbein theory is highly developed and is closely related to Cartan-
Maurer theory, a generalization of Riemann geometry [2].

The structure group of the tangent bundle in the four dimen-
sional spacetime base manifold is GL(4, R) [2], the group of real invert-
ible 4× 4 matrices. In a Lorentzian metric this reduces to the Lorentz
group SO(3, 1). The fibers of the fiber bundle are tied together with
ordinary rotations [2] and the structure group of the new bundle is
SO(3), the group of rotations in three space dimensions without the
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assumption of parity symmetry. The electromagnetic potential is de-
fined on this bundle by the dreibein Aa

µ, where a is (1), (2) or (3),
the indices of the complex circular representation of three dimensional
space. The evolution of electrodynamics in this way, as a gauge theory
with O(3) gauge group symmetry, where O(3) is the group of rotations
in three dimensions with parity symmetry, began with the proposal
of the B(3) field [6] as being responsible for the inverse Faraday effect
in all materials (phase free magnetization by circularly polarized elec-
tromagnetic radiation). Maxwell Heaviside electrodynamics is a gauge
field theory with no internal indices, and whose internal gauge group
symmetry is U(1) [7-12]. After a decade of development it is known
[12] that there are numerous instances in which O(3) electrodynamics
surpasses U(1) electrodynamics in its ability to describe experimental
data, for example data from interferometry, reflection, physical optics
in general, the inverse Faraday effect, and its resonance equivalent, ra-
diatively induced fermion resonance [7-12]. Therefore many data are
now known which indicate that the electromagnetic sector of grand uni-
fied field theory is described by an O(3) symmetry gauge field theory,
not U(1). In the development of O(3) electrodynamics the connection
on the internal fiber bundle of gauge theory was identified for the first
time as the connection on the tangent bundle of general relativity [2].
This is an essential step towards the evolution of a simple and powerful
unified field theory as embodied in Eq. (5) of this Letter. The tangent
bundle is defined with respect to the base manifold, which is four di-
mensional non-Euclidean spacetime [1]. Prior to the development of
higher symmetry electrodynamics, and generally covariant electrody-
namics [1,13,14] the tangent bundle of general relativity [2] was not
identified with the fiber bundle of gauge theory, in other words the
internal index of gauge theory was thought to be the index of an ab-
stract space unrelated to spacetime [2]. In O(3) electrodynamics the
internal index a = (1), (2), (3) represents a physical orthonormal space
tangential to the base manifold and in the basis ((1),(2),(3)) it is pos-
sible to define unit vectors e(1), e(2), e(3) which define a tangent space,
a space that is orthonormal to the base manifold (non-Euclidean, four
dimensional spacetime). It therefore becomes possible to invoke the
dreibein, or triad, as described already, with the three Latin indices
(a) representing the orthogonal space and the four Greek indices (µ)
the base manifold. The indices a = (1), (2), (3) can be used to define
the unit vector system in curvilinear coordinate analysis [1,14,15]. One
of the unit vectors, e.g., e(1), is a unit tangent vector to the curve,
and the other two, e(2) and e(3), are mutually orthogonal to e(1). This
procedure cures two fundamental inconsistencies of field theory as it
stands at present:

(1) The gravitational field is non-Euclidean space time in general rela-
tivity, while the other three fields (electromagnetic, weak and strong)
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are entities superimposed on flat or Euclidean spacetime.
(2) The U(1) electromagnetic field has an Abelian and linear character,
while the other three fields are non-Abelian and nonlinear[2].

Therefore the internal gauge space of O(3) electrodynamics
is identified with a tangent space in the complex circular basis
((1),(2),(3)), a basis chosen to represent circular polarization, a well
known empirical property of electromagnetic radiation [5-14]. This
allows electromagnetism to be developed as a theory of general rela-
tivity [1], using O(3) symmetry covariant derivatives, which become
spin affine connections in vielbein theory [2]. The O(3) electromag-
netic field tensor becomes a Cartan Maurer torsion tensor [2] which is
defined with a spin affine connection on the tangent bundle of general
relativity. These properties are contained with Eq. (5), together with
the ability to describe the gravitational, weak and strong fields. There-
fore, Eq. (5) is a generally covariant wave equation of grand unified field
theory.

In Sec. 2 the wave equation (5) is derived for various forms of the
eigenfunction using metric compatibility equations for the metric vector
qµ and the symmetric and anti-symmetric metric tensors qµqν and qµ∧qν
[1] and using the tetrad postulate [2] for the vielbein ea

µ. In Sec. 3
the equation of parallel transport and the geodesic equation [2-4] are
written in terms of the metric four-vector qµ, and the equation of metric
compatibility of the metric four vector shown to be a solution of the
geodesic equation. In Sec. 4 the Poisson equation and the Newtonian
equations are derived in the weak field limit of gravitational theory.
In Sec. 5 the second order wave equations are derived from Eq. (5) in
various limits for the four known fields of nature. Finally, Sec. 6 is a
discussion of some of the many possible avenues for further work based
on Eq. (5) and its classical equivalent given in Ref. [1].

2. DERIVATION OF THE GENERALLY COVARIANT
WAVE EQUATION

The wave equation is based on the following expression for the covariant
d’Alembertian operator:

DρDρ = � +DµΓρ
µρ, (7)

where
DµΓρ

µρ = ∂µΓρ
µρ + Γµρ

λ Γλ
µρ (8)

is the covariant derivative of the index contracted Christoffel symbol
Γρ

µρ. Equation (7) is derived by first considering the commutator [2]
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[Dµ, Dν ] acting on the inverse metric vector qρ [1]:

[Dµ, Dν ]q
ρ = DµDνq

ρ −DνDµq
ρ

= ∂µ(Dνq
ρ)− Γλ

µνDλq
ρ + Γρ

µσDνq
σ − (µ↔ ν)

= ∂µ∂νq
ρ + (∂µΓρ

νσ)qσ + Γρ
νσ∂µq

σ − Γλ
µν∂λq

ρ

−Γλ
µνΓ

ρ
λσq

σ + Γρ
µσ∂νq

σ + Γρ
µσΓσ

νλq
λ − (µ↔ ν)

= (∂µΓρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ)qσ

− 2(Γλ
µν − Γλ

νµ)Dλq
ρ

=Rρ
σµνq

σ − T λ
µνDλq

ρ,

(9)

where Rρ
σµν is the Riemann tensor and T λ

µν is the torsion tensor. Con-
sideration of the symmetry of Eq. (9), and contracting indices, ρ = σ,
leads to the result

DµDµ = ∂µ∂µ + ∂µΓρ
µρ + Γµρ

λ Γλ
µρ + 2Γλ

µµDλ. (10)

In this expression the Christoffel symbols are defined as [2]

(Γµ)ρ
ρ := Γρ

µρ, (Γµ)ρ
λ := Γρ

µλ, etc., (11)

but, by convention [2], the brackets are omitted in the notation. We
follow this convention in the rest of this paper. For any vector V ν ,

DµV
ν = ∂µV

ν + Γν
µλV

λ. (12)

We therefore can write

DµΓρ
µρ = ∂µΓρ

µρ + Γµρ
λ Γλ

µρ. (13)

The covariant d’Alembertian operator is therefore in general

DµDµ = � +DµΓρ
µρ + 2Γλ

µµDλ (14)

and can be thought of qualitatively as “half the Riemann tensor plus
half the torsion tensor.” This is a geometrical result independent of any
considerations of field theory.

Equation (5), the wave equation for the vielbein as eigenfunc-
tion, follows from the tetrad postulate [2]:

Dρe
a
µ = 0, (15)
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which holds whether or not the connection is metric-compatible or
torsion-free. Differentiating Eq. (15) covariantly gives Eq. (5):

Dρ(Dρe
a
µ) := DρDρe

a
µ =

(
� +DµΓρ

µρ + 2Γλ
µµDλ

)
ea

µ

=
(
� +DµΓρ

µρ

)
ea

µ = 0.
(16)

Equation (16) is therefore a geometrical result which is independent
of any assumptions made concerning the Christoffel symbol and its
relation to the metric tensor [2] or metric vector [1]. The covariant
d’Alembertian operator appearing in the wave equation (16) is the
sum of the flat spacetime d’Alembertian � and the term DµΓρ

µρ. The
latter is identified as scalar curvature (R) because it has the units of
inverse square meters and is defined by an index contraction [2]. The
scalar curvature R is obtained conventionally by contracting indices in
the Riemann tensor. Carroll [2], for example, defines R as follows:

R := qσν(S)Rλ
σλν , (17)

where the Ricci tensor is [2]

Rµν := Rλ
µλν (18)

and the Riemann tensor with lowered indices is [2]

Rρσµν := q
(S)
ρλ R

λ
σµν . (19)

However, Sachs [16] gives a different definition of the Ricci tensor:

Rκρ := qµλ(S)Rµκρλ; (20)

so, assuming Eq. (19) and contracting indices α = λ:

Rκρ = δλ
λR

λ
κρλ = qµλ(S)q(S)

µα R
α
κρλ (21)

Comparing Eqs. (18) and (21), and it is seen that the definition of the
scalar curvature R is a matter of convention, and is not standardized.
Different authors give different definitions. Therefore the R that ap-
pears in the Einstein equation with contracted indices, Eq. (2), is a
matter of convention. Furthermore, the minus sign that appears in
Eq. (2) is also a matter of convention, Einstein himself [4] used the
equation in the form R = kT , without a minus sign. In the rest of
this paper we will use the contemporary [2] convention R = −kT . The
general rule is that the scalar curvature R is found by a contraction of
indices in the Riemann tensor, which has several well-known symmetry
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properties [2], for example–it is anti-symmetric in its last two indices.
Using the following choice of index contraction:

R := Rµ
νµν = ∂µΓµ

νν − ∂νΓ
µ
µν + Γµ

µνΓ
ν
νν − Γµ

ννΓ
ν
µν , (22)

it can be seen that in this convention the scalar curvature is

R := ∂µΓµ
νν + Γµ

µνΓ
ν
νν −

(
∂νΓ

µ
µν + Γµ

ννΓ
ν
µν

)
= DµΓµ

νν −DνΓ
µ
µν .

(23)

Comparing Eqs. (16) and (23), it is deduced that the scalar curvature

R := −DµΓρ
µρ (24)

that appears in the definition of the covariant d’Alembertian is, quali-
tatively, “half” of the scalar curvature in Eq. (3), obtained directly from
the Riemann tensor. This result is consistent with the fact that the co-
variant d’Alembertian is, qualitatively (or roughly speaking), half the
Riemann plus torsion tensors. If the Christoffel symbol is assumed to
be symmetric in its lower two indices (as in the convention in standard
general relativity [2]) then the scalar curvature R defined in Eq. (24)
becomes the second term in Eq. (23). If the Christoffel symbol is anti-
symmetric in its lower two indices, as in the definition of the torsion
tensor (Eq. (9)), then the second term in Eq. (23) is the negative of the
definition appearing in Eq. (24). Importantly, however, Eq. (16) is valid
whatever the symmetry of the Christoffel symbol, because Eq. (16) is
the direct result of the tetrad postulate, Eq. (6). Therefore Eq. (16) is
true for curved spacetime (gravitation) and twisted or torqued space-
time (electromagnetism). Using Eq. (2), we deduce the wave equation
in the form

(� + kT )ea
µ = 0, (25)

where
DµΓρ

µρ = kT = −R. (26)

A less generally valid wave equation can be obtained with the
symmetric metric tensor of the Einstein field equation [1-4] as eigen-
function. This wave equation follows from the metric compatibility
condition [2]:

Dρq
(S)
µν = 0. (27)

Differentiating Eqs. (17) covariantly leads to the wave equation as the
eigenequation:

DρDρq
(S)
µν = (� + kT )q(S)

µν = 0, (28)
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where q
(S)
µν is the eigenfunction. A third type of wave equation can be

obtained using the definition [1]

q(S)
µν = qµqν . (29)

Covariant differentiation of products is defined by the Leibniz theorem
[2]; therefore the metric compatibility of the symmetric metric tensor,
Eq. (27), implies that

Dρ(qµqν) = qµ(Dρqν) + (Dρqµ)qν = 0, (30)

for the first derivative, and

D2(qµqν) := (DρDρ)(qµqν)

= qµD
2qν + 2(Dρqµ)(Dρqν) + qνD

2qµ

= 0

(31)

for the second derivative. A self consistent solution of Eqs. (30) and
(31) is

Dµqν = 0, (32)

which is a metric compatibility condition for the metric vector qµ.
Differentiating Eq. (32) covariantly gives the wave equation as an
eigenequation with the metric vector qµ as eigenfunction:

DρDρqµ = (� + kT )qµ = 0. (33)

Finally, it may be shown similarly that there exists a wave equation

with the anti-symmetric metric q
(A)
µν = qµ ∧ qν as eigenfunction, i.e.:

(� + kT )q(A)
µν = 0. (34)

3. FUNDAMENTAL EQUATIONS IN TERMS OF THE
METRIC VECTOR

The equation of metric compatibility (32) can be derived independently
as a solution of the equation of parallel transport [2] written for the
inverse metric four-vector qµ:

Dqµ

ds
:=

dqµ

ds
+ Γµ

νλ

dxν

ds
qλ = 0, (35)

where dxν/ds is the tangent vector to qµ. Here

(ds)2 = qµqνdxµdxν (36)
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is the square of the line element in curvilinear coordinates [1]. The
geodesic equation for qµ is

D

ds

(
dqµ

ds

)
= 0. (37)

Now use the chain rule [17] if u = f(x, y); then

du

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
; (38)

so, if qµ = qµ(xν), then

dqµ

ds
=
∂qµ

∂xν

dxν

ds
. (39)

Using Eq. (39) in Eq. (35), one gets(
∂qµ

∂xν
+ Γµ

νλq
λ

)
dxν

ds
= 0, (40)

i.e.,

(Dνq
µ)
dxν

ds
= 0. (41)

In general dxν/ds 6= 0, so Eq. (32), the metric compatibility condition
for qµ, is a solution of Eq. (41). Therefore the equation of metric
compatibility for qµ can be derived as a solution of the equation of
parallel transport for qµ. The geodesic equation (37) follows from the
equation of parallel transport (35), so the metric compatibility equation
for qµ is a special case of the geodesic equation for qµ. Using Eq. (39),
the geodesic equation becomes(

D

ds

(
∂qµ

∂xν

))
∂xν

∂s
+
∂qµ

∂xν

(
D

ds

(
∂xν

∂s

))
= 0. (42)

But the geodesic equation can be written for any vector V µ, and so

D

ds

(
dxν

ds

)
= 0. (43)

It therefore follows that

D

ds

(
∂qµ

∂xν

)
= 0. (44)

As shown in Ref. [1], the gravitation and electromagnetism can be
described from a novel generally covariant field equation for qµ:

Rµ −
1

2
Rqµ = kTµ. (45)
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4. DERIVATION OF THE POISSON AND NEWTON
EQUATIONS

The Poisson equation of gravitation can be derived straightforwardly in
the weak field limit [1-4] from the wave equation for an eigenfunction,
for example Eq. (33) which can be written as the two equations:

(� + kT )qo = 0, (46)

(� + kT )qi = 0, i = 1, 2, 3. (47)

Using

� :=
1

c2
∂2

∂t2
−∇2, (48)

Eq. (46) becomes
∇2qo = kTqo (49)

for a quasi-static qo. In the weak-field limit [1-4]:

qo = ε+ ηo = 1 + ηo, ηo � 1, (50)

where εµ is the unit four-vector. Therefore Eq. (49) becomes

∇2ηo = kTqo ∼ kT. (51)

This is the Poisson equation

∇2Φ = 4πGρ (52)

if

Φ =
1

2
c2ηo (53)

is the gravitational potential, if

ρ = T = m/V (54)

is the rest energy density, and if G is Newton’s gravitational constant,
related to Einstein’s constant by:

k = 8πG/c2. (55)

Newton’s law, his theory of universal gravitation, and the equiv-
alence of inertial and gravitational mass are all contained within the
metric compatibility condition

∂qµ

∂xν
= −Γµ

νλq
λ. (56)
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Multiplying Eq. (56) on both sides by qλ and using

(Γµ
ν0q

0) q0 = Γµ
ν0(q

0q0) = Γµ
ν0,

(Γµ
ν1q

1) q1 = Γµ
ν1(q

1q1) = −Γµ
ν1, etc.,

(57)

a unique equation is obtained for the Christoffel symbol in terms of
the metric vector, irrespective or whether or not the metric vector is
torsion-free:

Γµ
νo = −qo∂νq

µ, Γµ
νi = qi∂νq

µ, i = 1, 2, 3. (58)

(The well-known equation relating the Christoffel symbol to the sym-
metric metric tensor is more intricate and less useful, because it is de-
rived on the assumption of a torsion-free metric, i.e., that the Christof-
fel symbol is symmetric in its lower two indices. It is:

Γσ
µν =

1

2
qσρ(S)

(
∂µq

(S)
νρ + ∂νq

(S)
ρµ − ∂ρq

(S)
µν

)
, (59)

where qσρ(S) is the inverse of the symmetric metric tensor. The metric
tensors are defined by [2]

qµν(S)q(S)
νσ = δµ

σ , (60)

where

δµ
σ =

1, µ = σ,

0, µ 6= σ,
(61)

is the Kronecker delta. In non-Euclidean spacetime, the elements of

qµν(S) and q
(S)
µν are not the same in general [2].)

In the Newtonian limit, the particle velocities are much smaller
than c, so [2-4]:

dxi/dτ � dt/dτ ∼ 1. (62)

Using the chain rule for the left-hand side of Eq. (56), with proper time
τ as an affine parameter [2], we obtain

∂qµ

∂xν
=

dτ

dxν

dqµ

dτ
→ 1

c

dτ

dt

dqµ

dτ
=

1

c

dqµ

dt
. (63)

Consider now the identity obtained from the equation of metric com-
patibility, Eq. (56):

∂qµ

∂xν
:=

∂qµ

∂xν
. (64)
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Using the chain rule in the weak-field limit, the left-hand side of
Eq. (64) becomes

∂qµ

∂xν
→ 1

c

∂qµ

∂t
. (65)

If we consider the four-vector defined by

xµ = (x0, x1, x2, x3), (66)

then the metric vector is defined by (q0 := qµ(µ = 0), etc.)

q0 =
∂xµ

∂x0
, q1 =

∂xµ

∂x1
, q2 =

∂xµ

∂x2
, q3 =

∂xµ

∂x3
; (67)

therefore the left-hand side of Eq. (64) becomes for µ = 0:

1

c

∂q0

∂t
=

1

c2
∂2xν

∂t2
(68)

in the weak-field or Newtonian limit. In this limit the metric can be
considered as a perturbation of the flat spacetime metric [2]:

q0 =

(
1− 1

2
η0

)
∼ 1. (69)

The gravitational field in the Newtonian limit is quasi-static, and the
position vector is dominated by its time-like component, so

∂q0

∂xν
→ −1

2

∂η0

∂xν
. (70)

Equating left-hand and right-hand sides of the identity (64), gives, in
the Newtonian approximation,

d2xi

dt2
= −c

2

2

∂η0

∂xi
, (71)

which is Newton’s second law combined with the Newtonian theory of
universal gravitation. It is seen that the equivalence of gravitational
and inertial mass implied by Eq. (71) is a consequence of geometrical
identity (64). This is a powerful and original result, obtained from the
novel equation of metric compatibility (56).

Using the definition (53) for the Newtonian potential Φ, Eq. (71)
can be written in the familiar form

d2r

dt2
= −∇Φ, (72)
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which is equivalent to the inverse square law of Newton

F = m
d2r

dt2
= −GmM

r2
k. (73)

From Eq. (56) with µ = 0, it can be seen that Eq. (72) can be expressed
as one Christoffel symbol:

∂q0

∂xν
= −Γ0

ν0q
0 ∼ −Γ0

ν0, (74)

an equation which shows that the equivalence of gravitational and in-
ertial mass is a geometrical result, the equation of metric compatibility,
(56), which also leads to the generally covariant wave equation (33),
and self-consistently, to the Poisson Eq. (52) in the Newtonian approx-
imation. If we write Eq. (28) as

(� + kT )gµν = 0, (75)

i.e., using the standard notation gµν = g
(S)
µν for the symmetric metric,

the weak-field or Newtonian approximation gives

(� + km/V ) goo = 0, (76)

where T = m/V . If goo is considered to be quasistatic, Eq. (76) reduces
to

∇2goo = kTgoo. (77)

Using the weak field approximation

goo = 1− hoo ∼ 1 (78)

for the symmetric metric, we obtain Carroll’s Eq. (4.36) [2] (the Ein-
stein field equation in the weak-field limit):

∇2hoo = −kTgoo = −kToo, (79)

which is the Poisson equation (52) with hoo = −c2Φ/2, k =
8πG/c2, Too = m/V. Therefore the wave equation (28) is the
eigenequation corresponding to the classical Einstein field equation.
Einstein [4] arrived at the approximation (79) though an intermediate
equation (Eq. (89b) of Ref. [4]):

�γµν = 2kT ∗
µν , T ∗

µν = Tµν −
1

2
gµνT, (80)

in which the metric tensor was approximated by [4]:

gµν = −δµν + γµν . (81)
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Using the definition
T = gµνTµν , (82)

an expression is obtained for Tµν in terms of T :

gµνT = (gµνg
µν)Tµν = 4Tµν . (83)

Equation (80) can therefore be written as the eigenequation(
� +

1

2
kT

)
gµν = 0, (84)

which is the wave quation (28) except for a factor (1/2) coming from
the approximation method used by Einstein.

Using the weak-field limit of Eq. (33), we obtain

(� + km/V ) q0 = 0, (85)

where T = mc2/V is again the rest energy density. Identifying q0 as
a scalar field [5] identifies Eq. (85) as the single-particle wave equa-
tion, which after quantization can be interpreted as the Klein-Gordon
equation [5], whose wavefunction is identified with q0 in the weak-field
approximation. The Klein-Gordon equation is(

� +m2c2/~2
)
q0 = 0, (86)

so

E0 = mc2 =
m2c4V

~2k
. (87)

Equation (87) can be identified as the Planck/de Broglie postulate for
any particle:

E0 = ~ω0 = mc2, (88)

where ω0 is the rest frequency of any particle. The rest frequency is
defined by

ω0 = 8πc`2/V, (89)

where
` = (G~/c3)1/2 (90)

is the Planck length. Equation (87) means that the product of the rest
mass m and the rest volume V of any particle is a universal constant

mV = ~2k/c2, (91)

which is an important result of the generally covariant wave equation.
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Using the operator equivalence of quantum mechanics [5]

pµ = i~∂µ,

pµ = (En/c,p), ∂µ =

(
1

c

∂

∂t
,−∇

)
, (92)

Eq. (86) becomes Einstein’s equation of special relativity:

pµpµ =
En2

c2
− p2 = m2c2, (93)

in which En denotes the total energy (kinetic plus potential) and mc2

is the rest energy. From the equation [18]

F = γmv̇ = ṗ, (94)

where p = γmv is the momentum in the limit of special relativity
(weak-field limit), an expression is obtained for the kinetic energy in
special relativity:

T = mc2(γ − 1). (95)

In the non-relativistic limit v � c, the Newtonian kinetic energy

T =
1

2
mv2 (96)

is obtained from the second Newton law, Eq. (73), which is self-
consistently the non-relativistic weak-field limit of Eq. (33). Using the
operator equivalence (92) in Eq. (96) gives the time-dependent free-
particle Schrödinger equation [5,19]:

i~
∂q0
∂t

= −~2∇2

2m
q0. (97)

Identifying the Hamiltonian operator as

H = −~2∇2

2m
(98)

transforms Eq. (97) into the time-independent free-particle Schrödinger
equation

Hq0 = Tq0, (99)

which is a weak-field approximation to the wave equation (33) when we
consider kinetic energy only [5]. The wavefunction of the Schrödinger
equation (99) is [19]

q0 = 1 + AeiKZ +Be−iKZ , (100)
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which is the time-like component of the metric eigenfunction of Eq. (33)
in the weak-field approximation used to recover Eq. (99).

These methods illustrate that wave or quantum mechanics can
be considered to be an outcome of general relativity, and that the
wave-function can be considered to be a deterministic property of gen-
eral relativity, namely a metric four-vector, a metric tensor, or most
generally a vielbein.

The first Newton law is obtained in the weak-field limit of the
geodesic equation, or alternatively when the Christoffel symbol Γ0

ν0 in
Eq. (74) vanishes. These limits correspond to the flat spacetime in
which there is no acceleration. Newton’s law is contained within the
conservation law for qµ. The latter can be deduced from the Bianchi
identity [2]

DµGµν := 0, (101)

where

Gµν = Rµν −
1

2
Rgµν (102)

is the Einstein tensor. Noether’s theorem gives the energy conservation
law

DµTµν = 0, (103)

and the metric compatibility assumption of standard general relativity
[2] is

Dρgµν = 0. (104)

If we define [1]

Rµν := Rµqν , Tµν := Tµqν , gµν = qµqν , (105)

then the Bianchi identity (101) becomes

DµGµν = (DµRµ)qν +Rµ(Dµqν)

−1
2
RqµD

µqν − 1
2
Dµ(Rqµ)qν

:= 0.

(106)

Using the metric compatibility assumption for qν , Eq. (32), gives the
result

DµGµ = 0, Gµ := Rµ −
1

2
Rqµ. (107)

This is the Bianchi identity for the field tensor:

Gµ = kTµ. (108)
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Using Eq. (103) and the Leibniz theorem, the energy conservation law
becomes

Dµ(Tµqν) = (DµTµ)qν + Tµ(Dµqν)

= (DµTµ)qν = 0,
(109)

and the energy conservation law for Tµ is deduced to be

DµTµ = 0. (110)

The unified field equation (45) [1] becomes

Dµ(Gµ − kTµ) := 0. (111)

Using the equations [1]:

Rµ =
1

4
Rqµ, (112)

both the energy conservation law (110) and the Bianchi identity (107)
can be expressed as the equation(

Dµ +
1

R
DµR

)
qµ = 0. (113)

5. SOME FUNDAMENTAL EQUATIONS OF PHYSICS
DERIVED FROM THE WAVE EQUATION

Equation (113) is similar in structure to a gauge transformation equa-
tion in generic gauge field theory [2,5,7-12]. On using the results [2]

DµR = ∂µR, (114)

Dµq
µ = ∂µq

µ + Γµ
µλq

λ = 1√
|q|
∂µ(
√
|q|qµ),

= ∂µq
µ +

(
1√
|q|
∂µ

√
|q|
)
qµ,

(115)

where |q| is the modulus of the determinant of the symmetric metric
gµν := qµqν , Eq. (113) becomes(

∂µ +
1√
|q|
∂µ

√
|q|+ 1

R
∂µR

)
qµ = 0, (116)

a result which has been generated by the Leibniz theorem [2]

Dµ(Rqµ) = (DµR)qµ +R(Dµq
µ) = 0. (117)
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Now consider the definition of gauge transformation in generic gauge
field theory [5]:

ψ′ = Sψ (118)

where ψ is the generic (n-dimensional) gauge field and S the rotation
generator in n dimensions. Application of the Leibniz theorem pro-
duces

Dµ(Sψ) = (DµS)ψ + S(Dµψ). (119)

The covariant derivative in generic gauge field theory is defined through
a vielbein [2], the generic gauge potential Aa

µ, and a factor g (denoting
generic charge):

Dµ := ∂µ − igAµ, Aµ := maAa
µ; (120)

and the gauge transformation (118) implies that

A′
µ = Aµ −

i

gS
∂µS, (121)

i.e.,

igA′
µ = igAµ +

1

S
∂µS. (122)

The factor −i in Eq. (120) originates in the fact that the gauge group
generators ma in generic gauge field theory are defined as imaginary-
valued matrices. This procedure defines the upper index a of the viel-
bein Aa

µ [2]. However, a basis can always be found for the gauge group
generators such that Eq. (120) becomes

Dµ = ∂µ + gAµ. (123)

Comparing Eqs. (123) and (116),

Aµ =
1

g
· 1

R
∂µR =

~
e
· 1

R
∂µR = B(0)∂µR, (124)

where ~/e is the elementary unit of magnetic flux (the fluxon) and
where B(0) is a magnetic flux density. Equation (124) combines the
operator equivalence (92) of quantum mechanics with the minimal pre-
scription (pµ = eAµ) in generic gauge field theory, giving the result

pµ = eAµ = i~∂µ. (125)

This result has been obtained from the wave equation (33) and the
Bianchi identity (107) in general relativity. Comparison of Eqs. (117)
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and (119) shows that the scalar curvature R = −kT in general rela-
tivity plays the role of the rotation generator S in generic gauge field
theory, and that the metric qµ plays the role of the generic field Aµ

or potential. The field can be a scalar field as in the single particle
wave equation, Klein-Gordon, and Schrödinger equations (Sec. 4), but
can also be a spinor, as in the Dirac equation, and a four-vector as in
the Proca, d’Alembert, and Poisson equations of electrodynamics. In
gravitation it has been shown in previous sections that the field can be
a four-vector, a symmetric and anti-symmetric tensor and, most gener-
ally, a vielbein [2]. In O(3) electrodynamics [7-12] the field or potential
(Feynman’s “universal influence” [5]) is the vielbein Aa

µ, where the up-
per index denotes the Euclidean [2] complex circular basis ((1),(2),(3))
needed for the description of circular polarization in radiation. The
lower index denotes non-Euclidean spacetime in general relativity. The
upper index a is a basis for the tangent bundle of general relativity;
and if we now make the ansatz

Aa
µ = A(0)qa

µ = A(0)ea
µ, (126)

we identify the internal index of a the field or potential or “universal
influence” in gauge field theory with the basis index of the tangent
space [2] in general relativity. This identification is the key to field
unification in the new wave equation (25). In other words field unifi-
cation is achieved by choosing the eigenfunction of the wave equation
to represent the different fields that are presently thought to exist in
nature: scalar fields, vector fields, symmetric or anti-symmetric tensor
fields, spinor fields, and most generally, vielbeins. The weak field is a
vielbein whose SU(2) internal index describes the three massive weak
field bosons [5], and the strong field is a vielbein whose SU(3) internal
index represents gluons. The internal index of the weak field therefore
represents a physical tangent space of general relativity whose struc-
ture group is SU(2), homomorphic with the structure group O(3) of
O(3) electrodynamics [7-12]. The fiber bundle for both fields is there-
fore identified with the tangent bundle. In O(3) electrodynamics the
fibers are tied together with rotations in three dimensions represented
by the structure group SO(3) and the field is defined on this tangent
or fiber bundle by the vielbein Aa

µ. In weak field theory precisely the
same procedure is followed, but the structure group becomes SU(2)
and the field becomes the vielbein W a

µ whose three internal indices
represent the three massive weak field bosons. In strong field theory
the structure group is SU(3) and the vielbein becomes Sa

µ, where there
are eight indices a [5]. The ansatz (126) therefore implies that the
massive bosons of the weak field and the gluons of the strong field are
different manifestations of the photons with indices (1), (2), and (3) of
O(3) electrodynamics. The O(3) photons, the weak field bosons and
the gluons are described by Eq. (25) in which the eigenfunctions are re-
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spectively Aa
µ,W

a
µ , and Sa

µ, i.e., by the three wave equations of general
relativity

(� + kT )Aa
µ = 0, (127)

(� + kT )W a
µ = 0, (128)

(� + kT )Sa
µ = 0. (129)

In other words, the internal indices of the O(3), weak and strong fields
are different representations of the basis used to represent the tangent
space in general relativity. The O(3) electromagnetic field is repre-
sented by a vielbein in which the tangent space is defined in the O(3)
symmetry complex circular basis ((1),(2),(3)) [7-12]. This basis for the
vielbein of the weak field becomes the three SU(2) matrices (Pauli
matrices), and there are eight SU(3) symmetry matrices (geometrical
generalizations [5] of the three complex two by two Pauli matrices to
eight complex three by three matrices). These different basis represen-
tations are all representations of the same physical tangent space in
general relativity.

In the currently accepted convention of the standard model and
grand unified field theory the electromagnetic sector is represented by
the field or potential Aµ in which there is no internal index, and the
abstract fiber bundle of gauge field theory is not identified with the
physical tangent bundle of general relativity. Consequently the stan-
dard model suffers from the inconsistencies described in the introduc-
tion, the most serious of these inconsistencies is that the Principle of
General Relativity is not followed in the currently accepted convention
known as “the standard model”–the Principle is applied to the grav-
itational field in the standard model but not to the electromagnetic,
weak, and strong fields.

In O(3) electrodynamics the ansatz (126) implies that

Aµ = A(0)qµ =
1

g
· 1

R
∂µR (130)

(where the scalar magnitude A(0) and the differential operator ∂µ are
the same for all three indices a). If for each index a we assume that

qµ =
ds

dxµ
, (131)

then the ansatz (126) implies that

s =
1

gA(0)
=

1

κ
. (132)
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For each index a the geodesic equation for O(3) electrodynamics [7-12]
becomes

dκµ

ds
+ Γµ

νσκ
νκσ = 0, κµ =

dqµ

ds
, (133)

an equation which defines the propagation, or path taken in non-
Euclidean spacetime, of the three photons (1), (2), and (3) of O(3)
electrodynamics.

The wave equation (25) becomes the d’Alembert equation of
O(3) electrodynamics [7-12]

�Aa
µ = − 1

ε0c2
ja
µ (134)

if we define the four-current density by the vielbein

ja
µ = c2ε0kTA

a
µ. (135)

Equation (134) represents three wave equations [7-12], one for each
photon indexed (1), (2), and (3):

�A(1)
µ = − 1

ε0c2
j
(1)
µ , (136)

�A(2)
µ = − 1

ε0c2
j
(2)
µ , (137)

�A(3)
µ = − 1

ε0c2
j
(3)
µ , (138)

two transverse photons, (1) and (2), and one longitudinal (3). These
three equations are evidently equations of general relativity, and are
also gravitational wave equations multiplied on each side by the C
negative scalar magnitude A(0). It follows from the foregoing discussion
that these wave equations are also equations of the weak and strong
fields with Aa

µ replaced respectively by W a
µ and Sa

µ. The weak field
limit applied to Eq. (127) produces three Proca equations [5,7-12], one
for each photon (i.e., for each index a = (1), (2) and (3)):(

� +m2c2/~2
)
A(i)

µ = 0, i = 1, 2, 3, (139)

and this procedure also produces the Planck/de Broglie postulate (95)
applied to the photon, thus identifying the photon as a particle with
mass. In the limit of electrostatics we obtain from Eq. (127) the Poisson
equation

∇2A0 = −RA0 = kTA0, (140)

which shows that the source of the scalar potential A0 is the scalar
curvature R. This result appears to be an important indication of the
fact that electric current can be obtained from the scalar curvature
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of the non-Euclidean spacetime, i.e., electromagnetic energy can be
obtained from non-Euclidean spacetime through devices such as the
motionless electromagnetic generator [12].

The identification of the O(3) electromagnetic field as a vielbein
implies that the unit vectors e(1), e(2), e(3) of the basis described by the
upper Latin index a of the vielbein are orthonormal vectors of an Eu-
clidean tangent space to the base manifold (non-Euclidean spacetime)
described by the lower Greek index µ of the vielbein. The unit vectors
define the O(3) symmetry cyclic equations [7-12]:

e(1) × e(2) = ie(3)∗,

e(2) × e(3) = ie(1)∗,

e(3) × e(1) = ie(2)∗,

(141)

and can be used to define a tangent at any point p of a curve in the
non-Euclidean spacetime used to define the base manifold. The basis
unit vectors are defined in terms of the Cartesian unit vectors of the
tangent space by [7-12]

e(1) = (1/
√

2)(i− ij),

e(2) = (1/
√

2)(i + ij),

e(3) = k.

(142)

It follows that the O(3) electromagnetic field is defined in terms of the
metric vectors:

A(1) = A(0)/
√

2(i− ij)eiφ = A(0)q(1),

A(2) = A(0)/
√

2(i + ij)e−iφ = A(0)q(2),

A(3) = A(0)k = A(0)q(3),

(143)

where φ is the electromagnetic phase. The unit vectors e(1) and e(2)

can be thought of as tangent vectors on a circle as illustrated in the
following Argand diagram:
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i

ij

e(1)
e(2)

These tangent vectors are vectors of the tangent space to the base
manifold. If we write

q(1)′ = q(2)′ = 1√
2
(i cosφ+ j sinφ),

q(1)′′ = −q(2)′′ = 1√
2
(i sinφ− j cosφ),

(144)

it can be seen in the following diagram that the metric vectors are
tangent vectors that rotate around a circle for any given point Z:

q(1)''(φ = π)

q(1)'(φ = π)

q(1)'(φ = 0)

q(1)''(φ = 0)

q(1)'(φ = π/2)

q(1)''(φ = π/2)

q(1)'(φ = 3π/2 )
              

q(1)''(φ = 3π/2)
              

Y

X

As we advance along the Z axis, which defines the unit vector e(3)

orthonormal to e(1) and e(2), the path drawn out is a helix, and this is
the geodesic (propagation path) for O(3) radiation.

Having recognized that the O(3) electromagnetic field is defined
by the vielbein in Eq. (25), it becomes possible to define scalar-valued
components of the electromagnetic field (and scalar fields in general)
as scalar-valued vielbein components such as:

q
(1)
X = (1/

√
2)eiφ, q

(1)
Y = −(1/

√
2)eiφ,

q
(2)
X = (1/

√
2)e−iφ, q

(2)
Y = (1/

√
2)e−iφ,

q
(3)
Z = 1.

(145)
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These scalar-valued vielbein components are components of the
tangent-space vector:

qµ = q(1)
µ e(1) + q(2)

µ e(2) + q(3)
µ e(3), (146)

which is defined by the three four-vectors [7-12] in the base manifold

q
(1)
µ , q

(2)
µ , q

(3)
µ , one four-vector for each index a = (1), (2) and (3). The

components of the O(3) electromagnetic field are therefore

A(1)
µ = A(0)q(1)

µ , (147)

A(2)
µ = A(0)q(2)

µ , (148)

A(3)
µ = A(0)q(3)

µ , (149)

two transverse (a = (1) and (2)) and one longitudinal (a = (3)).
The vielbein is well defined object in differential geometry [2]

and can be used, for example, to generalize Riemann geometry through
the Maurer-Cartan structure equations. The close similarity of vielbein
theory to gauge theory is also well understood mathematically [2], but
in the currently accepted convention of the standard model the vielbein
has not been used because the identification of the fiber bundle of
gauge field theory is the tangent bundle of general relativity has not
been made. In this section we have identified the internal index of
O(3) electrodynamics with the tangent space of general relativity by
identifying a with the indices (1), (2), and (3). This identification allows
results from vielbein theory and differential geometry to be used for
unified field theory, i.e., both for general relativity and gauge theory.
For example the O(3) gauge field is defined by [2]:

Ga
µν = (dA)a

µν + (ω ∧ A)a
µν

= ∂µA
a
ν − ∂νA

a
µ + ωa

µbA
b
ν − ωa

νbA
b
µ,

(150)

which is a covariant exterior derivative in differential geometry. In
Eq. (150) ωa

µb is a spin affine connection. In gauge field theory the O(3)
electromagnetic gauge field is defined by the gauge-invariant commu-
tator of covariant derivatives [5,7-12]:

Ga
µν = i

g
[Dµ, Dν ] = ∂µA

a
ν − ∂νA

a
µ

+g(Ab
µA

c
ν − Ab

νA
c
µ).

(151)

A comparison of Eq. (150) and (151) defines the spine affine connections
in terms of the O(3) fields or vector potentials:

ω a
µ bA

b
ν − ω a

µ bA
b
µ = g(Ab

µA
c
ν − Ab

νA
c
µ) = gεabcA

b
µA

c
ν . (152)
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Thus, the field or potential or “universal influence” Aa
µ has been defined

in this section in terms of the scalar curvature in general relativity and
also in terms of the spin affine connections. The gauge field Ga

µν is
invariant under the gauge transformation (128); i.e., if

Aµ → Aµ −
i

g

1

S
∂µS, (153)

the gauge field is unchanged. This result is true for all four fields.
In gravitation the equivalent of the gauge field is the Riemann tensor,
which is covariant under coordinate transformation, while the Christof-
fel symbol is not covariant under coordinate transformation because it
is not a tensor [2].

Some powerful results of vielbein theory may be translated di-
rectly into the language of unified field theory developed in this Letter,
for example O(3) electrodynamics. The first of the Maurer-Cartan
structure relations [2] of differential geometry is

dT a + ωa
b ∧ T b = Ra

b ∧ eb (154)

and states that the covariant exterior derivative of the torsion form T a

(left hand side of Eq. (154) is the wedge product of the Riemann form
Ra

b and vielbein form eb (right-hand side of Eq. (154)). Equation (154)
is the inhomogeneous field equation of O(3) electrodynamics:

DµG
µν,a =

1

µ0

jν,a, (155)

where the charge-current density vielbein is defined by Eq. (135) of
this Section. Equations (154) and (155) are equations of unified field
theory–the torsion form T a represents electromagnetism (or the weak
and strong fields), and the Riemann form Ra

b represents gravitation. In
Ref. (1) the inhomogeneous equation (153) was inferred from Eq. (45)
by multiplying it on both sides by the wedge ∧Aµ

ν , and by defining the
electromagnetic field tensor as

Gµν = G(0)(Rµ ∧ qν −
R

2
qµ ∧ qν) (156)

and the charge current density as

jν = µ0G
(0)kDµ(T µ ∧ qν). (157)

The gravitational field and Riemann tensor were defined [1] by mul-
tiplying the novel field Eq. (45) on both sides by qν , so Eq. (45), the
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classical analogue of the wave equation (25) is an equation of unified
field theory.

The second Maurer-Cartan structure relations is the Bianchi
identity, and translates into the Bianchi identity of gravitation [2,5],
and also into the identity (107) used in Sec. 4 to derive the gauge
invariance equation (113). In O(3) electrodynamics it becomes the
homogeneous field equation [1], the Jacobi identity

DµG̃
µν,a := 0, (158)

where G̃µν,a is the dual [5,7-12] of Ga
µν .

The tetrad postulate of vielbein theory, Eq. (6), translates into
the O(3) symmetry cyclic relations

∂iq
(1)∗
j = −iκq(2)

i × q
(3)
j ,

∂iq
(2)∗
j = −iκq(3)

i × q
(1)
j ,

∂iq
(3)∗
i = −iκq(1)

i × q
(2)
j

(159)

between space indices of the base manifold (µ = i = 1, 2, 3).
In this section the O(3) electromagnetic gauge field has been

identified in three different ways: Eqs. (150), (151), and (156). Self-
consistency demands that these three definitions by the same, giving
Eq. (152), for example. This equation relates the spin affine connection
and the vector potential. Comparing equations (151) and (156) gives
the important result

G(0)

(
Rµ ∧ qν −

R

2
qµ ∧ qν

)
= ∂µA

a
ν − ∂νA

a
µ + gεabcA

b
µA

c
µ, (160)

which indicates that the group structure of generally covariant electro-
dynamics is non-Abelian and that generally covariant electrodynamics
must be a gauge field theory with an internal gauge group such as O(3),
of higher symmetry than the conventional U(1) of the standard model.
The wedge product Rµ ∧ qν is accordingly identified as

Rµ ∧ qν =
1

G(0)

(
∂µA

a
ν − ∂νA

a
µ

)
(161)

and the wedge product qµ ∧ qν as

R

2
qµ ∧ qν = − g

G(0)
εabcA

b
µA

c
ν . (162)
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If electrodynamics were a U(1) Abelian theory, then the wedge product
qµ ∧ qν would be zero:

qµ ∧ qν = qµqν − qνqµ = 0. (163)

The electromagnetic field would then disappear because [1]

Rµ =
1

4
Rqµ. (164)

The tetrad postulate in U(1) symmetry gauge field theory would reduce
to

Dµqν = (∂µ − igAµ)qν = (∂µ − igA(0)qµ)qν = 0. (165)

The U(1) gauge field would then be

Gµν = ∂µAν − ∂νAµ = igA(0)2(qµqν − qνqµ) = 0 (166)

and would vanish, a result that is self consistent with Eq. (164). It
is concluded that general relativity implies higher symmetry electrody-
namics, a result that is crucial for the development of a unified field
theory.

Finally in this section we use another important result of viel-
bein theory to derive the Dirac equation from the wave equation (25):
the vielbein allows spinors to be developed in non-Abelian spacetime.
Each component of the spinor must obey a Klein-Gordon equation
(Ref. [5], p. 45). The Klein-Gordon equation is obtained from the
wave equation (25) by considering the four scalar components of the
vielbein (there are four such components for each index a). The solu-
tions of the Dirac equation for a particle at rest are the positive and
negative solutions, respectively,

ψ = u(0) exp(−imt), ψ = v(0) exp(imt). (167)

The two positive energy and two negative energy spinors in this limit
become

u(1)(0) =


1
0
0
0

 , u(2)(0) =


0
1
0
0

 , v(1)(0) =


0
0
1
0

 , v(2)(0) =


0
0
0
1

 ,

(168)
and these are identified as components of the vielbein. The Dirac
equation has been obtained from the wave equation (25), which uses
the vielbein as eigenfunction.
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6. DISCUSSION

The key to field unification (unification of general relativity and gauge
theory) in this Letter is the realization that the internal index (fiber
bundle index) of gauge theory is the tangent bundle index of general
relativity. Fundamental geometry shows that this internal index is
present in basic relations such as the one between Cartesian unit vectors
in Euclidean spacetime, i× j = k in cyclic permutation. This internal
index is implicitly assumed to exist in everyday geometry in flat space,
but is the key to realizing that the most general eigenfunction for the
wave equation (25) must be a vielbein. The unit vectors i, j,k (or
e(1), e(2), e(3) of the complex circular basis) are most generally vielbeins.
It follows in generally covariant electrodynamics that the field Aa

µ is
also a vielbein and that the gauge group symmetry of electrodynamics
must be O(3) or higher. The existence of a U(1) gauge field theory
is prohibited by fundamental geometry, because in such a theory the
internal index of the vielbein is missing. This is geometrically incorrect.
These results are proven as follows.

Consider the displacement vector [1,14,15] in the three dimen-
sions of Euclidean space:

r = Xi + Y j + Zk. (169)

The Cartesian unit vectors are

i =
∂r

∂X
/

∣∣∣∣ ∂r∂X
∣∣∣∣ , j =

∂r

∂Y
/

∣∣∣∣ ∂r∂Y
∣∣∣∣ , k =

∂r

∂Z
/

∣∣∣∣ ∂r∂Z
∣∣∣∣ , (170)

and the three metric vectors are [1,18,19]

qX = qa(a = 1) =
∣∣ ∂r
∂X

∣∣ i,
qY = qa(a = 2) =

∣∣ ∂r
∂Y

∣∣ j,
qZ = qa(a = 3) =

∣∣ ∂r
∂Z

∣∣k.
(171)

It follows that in Euclidean space that both the unit and metric vector
components must be labeled with an upper and lower index:

q1
1 = −1, q1

2 = 0, q1
3 = 0,

q2
1 = 0, q2

2 = −1, q2
3 = 0,

q3
1 = 0, q3

2 = 0, q3
3 = −1,

q1
1 = −i1 = iX = 1, etc.

(172)
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These results extend to Euclidean spacetime on using the index 0

q0
0 = 1, q0

1 = 0, q0
2 = 0, q0

3 = 0. (173)

Equations (172) and (173) define the vielbein qa
µ where a = 0, 1, 2, 3,

and µ = 0, 1, 2, 3. More precisely, the vielbein is a vierbein or tetrad
[2] because there are four internal or tangent space indices a and four
indices µ of the base manifold. If the tetrad is used in the context of
general relativity the a index becomes the tangent space index, and if
the tetrad is used in gauge theory a is the index of the internal space
that defines the gauge group. Therefore fundamental geometry shows
that the tetrad can be used both in general relativity and gauge theory,
and this is the key to field unification.

In Ref. [1] it has been shown that both the gravitational and
electromagnetic field originate in Eq. (45): if the gravitational field is
described through the symmetric metric tensor qµqν then the electro-
magnetic field must be described through the anti-symmetric tensor:

Gµν = G(0)

(
Rµ ∧ qν −

1

2
Rqµ ∧ qν

)
. (174)

This is again a result of geometry, essentially the result states that there
exists a dot product between two vectors (symmetric metric tensor qµqν ,
used to describe the gravitational field) there must exist a cross product
between the same two vectors (anti-symmetric metric tensor qµ ∧ qν ,
used to describe the electromagnetic field). Taking the definition [1]

R = qµν(S)Rµν = qµqνRµqν = −2qµRµ, qνqν = −2, (175)

it follows that

Rµ =
1

4
Rqµ, Gµν =

1

4
G(0)R (qµ ∧ qν − 2qµ ∧ qν) (176)

and that the electromagnetic field can be written in general as the
wedge product:

Gµν = −1

4
G(0)R(qµ ∧ qν). (177)

The minus sign in Eq. (177) is a matter of convention and so the elec-
tromagnetic field can be succinctly expressed, within a factor B(0), as
the wedge product of qµ and qν :

Gµν = B(0)(qµ ∧ qν), (178)

where B(0) has the units of magnetic flux density [7-12]:

B(0) =
1

4
G(0)R. (179)
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The wedge product of two one forms in differential geometry is defined
[2] by

Aµ ∧Bν = (A ∧B)µν = AµBν − AνBµ. (180)

Therefore the wedge product vanishes if qµ and qν are considered as
four vectors with no internal index. It follows that electromagnetism
cannot be a gauge theory with no internal index, and therefore cannot
be a U(1) gauge field theory. The wedge product of the two vielbeins
qa
µ and qb

ν is

(qa ∧ qb)µν = qa
µq

b
ν − qa

νq
b
µ, (181)

and the electromagnetic field is the differential two-form

Gc
µν = B(0)(qa ∧ qb)µν . (182)

In differential geometry, the Greek indices become redundant (i.e., can
be assumed implicitly to be always the same on the left and right hand
sides of an equation in differential geometry, the theory of differential
forms), so the Greek indices can be suppressed [2]. Equation (182) can
therefore be written as

Gc = B(0)qa ∧ qb, (183)

and, within a factor B(0), the electromagnetic field is a torsion two form
T c:

Gc = B(0)T c = B(0)qa ∧ qb. (184)

The first Maurer-Cartan structure relation (Eq. (154)) relates
the torsion two form to the Riemann form, and so the first Maurer-
Cartan structure relation becomes a relation between gravitation (Rie-
mann form) and electromagnetism (torsion form). By adjusting the
index a on the torsion form, the Maurer-Cartan structure relation be-
comes one between the weak field and gravitation, and the strong field
and gravitation. This inter-relation between fields is a result of ge-
ometry and of the novel grand unified field theory developed in this
Letter.

In the language of tetrads and wedge products the geometrical
equation i× j = k becomes

(q1 ∧ q2)12 = q1
1 ∧ q2

2 = q1
1q

2
2 − q1

2q
2
1 = q1

1q
2
2 = (q3)12 = q3

3. (185)

in Euclidean spacetime in the Cartesian basis the tetrad is non-zero if
and only if a = µ1 so it has been implicitly assumed that qa

µ can be
written as qµ. This assumption means that the existence of the inter-
nal index a in basic geometry has been overlooked. In gauge theory
this has led to the incorrect assumption that there can exist a gauge
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theory (electromagnetism) with no internal index. Careful considera-
tion shows however that the unit vectors i, j,k are the following tetrad
components:

−i := (0, q1
1, 0, 0), −j := (0, 0, q2

2, 0), −k := (0, 0, 0, q3
3). (186)

In a non-Euclidean space (base manifold) defined [1,14,15] by the curvi-
linear coordinate basis (u1, u2, u3) the unit vectors are the orthonormal
tangent space vectors

ea =
∂r

∂ua
/

∣∣∣∣ ∂r∂ua

∣∣∣∣ , a = 1, 2, 3, (187)

obeying the O(3) cyclic relations

e1 × e2 = e3, et cyclicum, (188)

and the metric vectors are

qa =
∂r

∂ua
, a = 1, 2, 3, (189)

i.e., the tetrad components

qa
1 = −∂X

∂ua
, qa

2 = − ∂Y
∂ua

, qa
3 = − ∂Z

∂ua
. (190)

The tetrad in four-dimensional spacetime is therefore qa
µ. The upper

index a of the tetrad denotes a flat, orthonormal tangent spacetime, and
the lower index µ the non-Euclidean base manifold (the non-Euclidean
spacetime of general relativity). The structure factors [1] are:

ha = (qa
0q

a0 − qa
1q

a1 − qa
2q

a2 − qa
3q

q3). (191)

In general relativity the metric qa
µ always has an upper index a, and

a lower index µ, and the tetrad qa
µ is the eigenfunction of the wave

equation (25) of grand unified field theory. It has been demonstrated
in this Letter that this wave equation is the direct result of the tetrad
postulate, Eq. (6), and so is the direct result of geometry. More gener-
ally, it has also been demonstrated in this Letter that there must exist
an internal index a in all geometrical relations, such as the relation
between Cartesian unit vectors i, j,k.

O(3) electrodynamics [7-12] is therefore Eq. (178) when the in-
ternal index a is (1), (2), and (3), and O(3) electrodynamics is the
direct result of general relativity, and of geometry. In other words the
very existence of gravitation is empirical evidence for the existence of
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O(3) electrodynamics, because gravitation is described through qa
µq

b
ν

and O(3) electrodynamics by qa
µ ∧ qb

ν . Both fields originate in the clas-
sical equation (45) [1], which is the classical limit of the wave equation
(25). In O(3) electrodynamics the tetrad postulate (6) becomes the
cyclic equations with O(3) symmetry:

∂µA
(3)∗
ν = −igA(1)

µ ×A
(2)
ν ,

∂µA
(1)∗
ν = −igA(2)

µ ×A
(3)
ν ,

∂µA
(2)∗
ν = −igA(3)

µ ×A
(1)
ν ,

(192)

where we have used the relation Aa
µ = A(0)qa

µ. The tetrad postulate (6)
shows that:

∂µA
(1)∗
ν − ∂νA

(1)∗
µ = −igA(2)

µ ×A
(3)
ν ,

∂µA
(2)∗
ν − ∂νA

(2)∗
µ = −igA(3)

µ ×A
(1)
ν ,

B
(3)∗
µν = −igA(1)

µ ×A
(2)
ν .

(193)

The gauge field in O(3) electrodynamics is defined by the cyclic rela-
tions [7-12]

G
(3)∗
µν = ∂µA

(3)∗
ν − ∂νA

(3)∗
µ − igA

(1)
µ ×A

(2)
ν ,

G
(1)∗
µν = ∂µA

(1)∗
ν − ∂νA

(1)∗
µ − igA

(2)
µ ×A

(3)
ν ,

G
(2)∗
µν = ∂µA

(2)∗
ν − ∂νA

(2)∗
µ − igA

(3)
µ ×A

(1)
ν .

(194)

But we know from Eq. (178) that

G
(3)∗
µν = −iB(0)q

(1)
µ × q

(2)
ν ,

G
(1)∗
µν = −iB(0)q

(2)
µ × q

(3)
ν ,

G
(2)∗
µν = −iB(0)q

(3)
µ × q

(1)
ν ,

(195)

so in O(3) electrodynamics there exist the following three fundamental
relations:

gA(1)
µ ×A(2)

ν = B(0)q(1)
µ × q(2)

ν , et cyclicum. (196)

Finally the realization that the electromagnetic field must be a
tetrad allows the description of the internal space by any appropriate
index of the orthonormal tangent space, for example a can be (1),(2),(3)
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of the complex circular basis, or it can be (X, Y, Z) of the Cartesian ba-
sis. So O(3) electrodynamics, or any higher symmetry electrodynamics,
can be developed using any well defined index a of the tangent space of
general relativity. This means that electrodynamics can be developed
as an SU(2) symmetry gauge field theory, or as an SU(3) symmetry
gauge field symmetry. This suggests that the weak and strong fields
may both be manifestations of the electromagnetic field. Essentially,
one field is changed into another by changing the index a. Therefore
there emerge many possible inter-relations between fields once it is re-
alized that the index a is always present in the tetrad qa

µ, i.e., in the
eigenfunction of the wave equation (25).
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