ガロア拡大とガロア群

Joh @物理のかぎプロジェクト

2007-03-03

この記事と次の ガロア群の例 では,体の自己同型写像 で勉強したガロア拡大とガロア群について,もう少し理解を深めることを目的とします.目新しい概念は出てきませんが,役に立つ定理を幾つか考えます.また,ここまでに既習の事柄も,このあたりで一度頭の整理をしてみて下さい.

ガロア群

ガロア群の元を求める際に,次の定理が便利です.

Important

 ζ を 1 の素数乗根 $e^{\frac{a\pi i}{p}}$ (p は素数) とします.有理数体 Q に ζ を添加してできる拡大体 $Q(\zeta)$ に対し,ガロア群は整数の剰余群と同型となり, $\mathcal{G}(Q(\zeta)/Q)\sim Z_p$ がなりたちます

proof

いま p は素数としていますので,剰余群 Z_p は p 次の巡回群 $\{[0],[1],...,[p-1]\}$ になります. $x^p-1=(x-1)(x^{p-1}+x^{p-2}+...+1)=0$ を考えると, ζ は $x^{p-1}+x^{p-2}+...+1=0$ の解ですが,この方程式は Q 上既約で,Q 上には解を持たず,体 $Q(\zeta)$ は $x^{p-1}+x^{p-2}+...+1=0$ の最小分解体 $Q(x_1,x_2,...,x_{p-1})$ になっており,拡大次数は p です.よって定理が成り立ちます.

例 1

有理数体 Q に, $x^5-1=0$ の解の一つである $\zeta=e^{\frac{2\pi i}{5}}$ を添加して作った拡大体 $Q(\zeta)$ はガロア拡大になっています. $Q(\zeta)$ の元は $a+b\zeta+c\zeta^2+d\zeta^3+e\zeta^4$ $(a,b,c,d,e\in Q)$ の形をしており,拡大次数は Sです.一方,ガロア群 $G(Q(\zeta)/Q)$ は,S0 に同型ですので位数は S0 です.よって,S0 は S0 のガロア拡大になっています.

ガロア拡大とガロア群に関しては,体の拡大次数が,ガロア群の位数で表されてしまうわけです.とて

 $^{^{*1}}$ 前定理より,拡大次数が $2,3,5,7,11,\dots$ の代数的拡大体は,全てガロア拡大だと言えます.

ガロア拡大とガロア群 2

も美しい関係です.

ガロア拡大の別の定義

ここまでに,ガロア拡大とは『 F の拡大体 E が,E の F 上自己同型写像群 $\mathcal{G}(E/F)$ が E を固定体とし, $[F:E]=|\mathcal{G}(E/F)|$ の場合』と定義しました.この定義は分かりやすいものですが,全く同値な定義に言い換えることも出来ます.

【ガロア拡大の定義】

- 1. $[E:F] = |\mathcal{G}(E/F)|$
- 2. E は F の有限次分離正規拡大体です.
- 3.~E は , F 上のある分離多項式 f(x) の最小分解体になっています .

これらが同値な条件であることは,以下に証明します.場合に応じて,分かりやすい定義を使えば良いと思います.二番目の定義を最初に挙げる教科書が多いようです. $(2. \to 3.)$ の証明は 体の元の共役と正規拡大体 で示してありますので,ここでは $(1. \to 2.)$ の証明を示します.

proof

(1. 2.) E の任意の元 α に対し, α の最小多項式が重解を持たず,かつ E 上で一次式の積に分解できることを示せばよいわけです. $\mathcal{G}(E/F)$ は有限群ですので, $\mathcal{G}(E/F)$ の元の中で相異なるものを集めた集合 $\{\tau_1,\tau_2,...,\tau_n\}$ を考えます $(n\leq |\mathcal{G}(E/F)|)$.E の任意の元 α にたいし,この集合の元による写像を $\tau_i(\alpha)$ と書き,多項式 $f(x)=(x-\tau_1(\alpha))(x-\tau_2(\alpha))\cdots(x-\tau_n(\alpha))$ を考えます.まず各 τ_i は全て異なるので,f(x) は重解を持ちません.また,f(x) を展開した際の係数は全て $\tau_i(\alpha)$ (i=1,2,...,n) の和と積で表現されますが,これらは固定体 F の元になっているはずです.これより, α の F 上の最小多項式 q(x) ($q(x)=x-\alpha$ とは限りません)は f(x) を割るので,q(x) は重解を持ちません.よって q(x) は E 上一次式の積に分解できます.これより,E は E の分離正規拡大体になっています.

ガロア拡大の表現には,他にも色々なものがあり,教科書によって取り上げ方が様々だと思います.例えば,次の二つの条件が成り立つことも,E が F のガロア拡大であることと同値であることを示すことが出来ます.

【補足】

- $1.\ F$ 上既約な m 次方程式 g が , もし一つでも E 上に解を持てば , g は結局 m 個の解を E 上に持ちます .
- 2. E は F の代数的単純拡大体として表現できます .(つまり , F 上にある代数的元 θ があって , $E=F(\theta)$ と書けるということ .)

後で使う都合上,1. だけ,簡単に証明しておきます.あまり,証明の細かいところにはまらずに,結果だけ了承して先に進んでも良いと思います.

ガロア拡大とガロア群 3

proof

まず必要条件を証明します.E が F のガロア拡大だとすれば,ガロア群を $\mathcal{G}(E/F)=\{\phi_1,\phi_2,...,\phi_n\}$ のように決めることができ, $\alpha\in E$ に対し $\phi_1\alpha,\phi_2\alpha,...,\phi_n\alpha\in E$ が言えます.これらの中から,r (>m) 個を選んで,多項式 $g(x)=(x-\alpha_1)(x-\alpha_2)\cdots(x-\alpha_r)$ を作ると,g の係数は $\mathcal{G}(E/F)$ によって動かされませんから(ガロア群の元は α_i を置換するだけなので),g は F 上の多項式だいうことが出来ます.ここで α を解とする F 上既約な多項式 f を考えると(m 次多項式とします), $g(\alpha)=0$ より,f は g を割るはずですが,g の最小分解体が E なので,f の最小分解体も E になり,既約という仮定より,f の解は全て異なるはずです.

proof

次に十分条件を示します. $E=F(\theta)$ と書け,[E:F]=n とします.いま, θ の最小分解多項式は n 個の解持つはずですので,それを θ_i (i=1,2,...,n) とすると,拡大体 $F(\theta_i)\subset E$ は,全てのの i に対して $[F(\theta_i):F]=n$ を満たし,結局 $F(\theta_i)=E$ が言えます.ここで,写像 ϕ_i (i=1,2,...,n) を $\phi_i(\theta_1)=\theta_i$ と定義すると, $\{1,\phi_1,\phi_2,...,\phi_{n-1}\}$ は E を F 上のベクトル空間とみたときの基底になっており,F 上の多項式 g に対して $\phi_i g(\theta_1)=g(\theta_i)$ が成り立ちます.これより, ϕ_i は F を固定体とする E の自己同型写像だということが出来て,E は F のガロア拡大だと言えます.

例 2

 $Q(\sqrt[3]{2})$ は Q のガロア拡大ではありません . $Q(\sqrt[3]{2})$ の任意の元は $a+b\sqrt[3]{2}+c\sqrt[3]{2}$ の形に書けますが , $\sqrt[3]{2}$ の共役元である $\sqrt[3]{2}\omega$, $\sqrt[3]{2}\omega^2$ (ω は 1 の三乗根で $\omega=\frac{1+i\sqrt{3}}{2}$ とします) を含まないため , 正規拡大にはなっていないからです .

アーベル拡大体と巡回拡大体

特に,ガロア群が可換群である場合のガロア拡大体を アーベル拡大体,ガロア群が巡回群である場合のガロア拡大体を 巡回拡大体 と呼びます.